General Mathematics and Computational Science I

Midterm I

October 5, 2006

1. Prove by induction that

$$
\begin{equation*}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1} \tag{8}
\end{equation*}
$$

for every $n \in \mathbb{N}$.
2. A triangle is divided by lines parallel to each of its sides into T_{n} smaller triangles. (The figure below shows the case $n=4$ where $T_{n}=16$.) Find a formula for T_{n} and prove that your formula is correct.

3. Give one example each of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is
(a) bijective,
(b) injective but not surjective,
(c) surjective but not injective,
(d) neither surjective nor injective.

$$
(2+2+2+2)
$$

4. Consider the set $Q=\{(a, b): a, b \in \mathbb{Z}$ and $b \neq 0\}$. Let $(a, b) \sim(c, d)$ if and only if $a d=b c$.
(a) Show that \sim is an equivalence relation, i.e. that it is reflexive, symmetric, and transitive.
(b) Define an operation \circ on Q via $(a, b) \circ(c, d)=(a d+b c, b d)$. Show that \circ is well defined on classes $[a, b]$ with respect to the equivalence relation \sim. In other words, prove that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$, then $(a, b) \circ(c, d) \sim\left(a^{\prime}, b^{\prime}\right) \circ(c, d)$.
5. Consider a map $G: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(M1) $G(a, 1)=a$ for all $a \in \mathbb{N}$,
(M2) $G(a, s(b))=G(a, b)+a$ for all $a, b \in \mathbb{N}$.
Prove, by showing that a certain set is inductive, that $G(a, c)=G(b, c)$ implies $a=b$ for any $a, b, c \in \mathbb{N}$.
6. Show that $\mathbb{N} \cong\{n \in \mathbb{N}: n$ even $\}$.
