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Abstract
These notes provide a first introduction to the qualitative theory of difference equa-

tions. We introduce the concept of equilibrium points, periodic points, and stability to
derive a general description of the dynamics of a solution to a difference equation even
in situations where a complete closed-form solution does not exist. These concepts
are illustrated by several examples from modeling real-world systems. To a large part,
this material is distilled from the book by Elaydi [1], which contains a wealth of more
advanced topics and further examples.

1 Introduction

In general, a difference equation of order k is a relation of the form

xn+1 = f(xn, . . . , xn−k+1) (1)

together with k starting values x0, . . . , xk−1. A sequence of real numbers xn with n = 0, 1, . . .
is called the solution to the difference equation if it satisfies (1) as well as the given starting
values. The set {xn : n = 0, 1, . . . } is called an orbit.

A difference equation is called linear if it is of the form

xn+1 = a0(n)xn + a1(n)xn−1 + · · ·+ ak−1(n)xn−k+1 + b(n) . (2)

If the ai do not depend on n, we speak of a constant coefficient difference equation; if b(n) = 0
we say that the equation is homogeneous.

We have already encountered difference equations before. For example, the Fibonacci
sequence

an+1 = an + an−1 , (3a)

a0 = a1 = 1 , (3b)

is a linear, second-order, constant coefficient, homogeneous difference equation. We already
know that such equations can be solved by using the method of generating functions.

The main point here is to develop techniques that remain applicable when closed-form
solutions are not available. However, we will frequently use solvable equations as examples.
A relatively simple class of such equations is first order linear difference equations, which are
discussed next.
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2 First order linear difference equations

Problem 1. To treat a chronic disease, a dose of dmg of a drug is administered starting
from day. Each day, a fraction of p of the drug is eliminated from the body. What is the
amount of drug in the body after a very long time?

Let an denote the amount of drug in the body at day n. Suppose the treatment starts
at day n = 1. Then a0 = 0 and

an+1 = (1− p) an + d . (4)

This is a first order linear difference equation which can be solved as follows. On day n, the
dose which was administered on day k has been in the body for n−k days. Of this dose, the
amount remaining after each day is 1 − p times the amount that was present the previous
day. So the amount left of the dose at day n is (1− p)n−k d. Thus,

an =
n∑
k=1

(1− p)n−k d

= d
n−1∑
j=0

(1− p)j

= d
1− (1− p)n

p
, (5)

where, in the last step, we used the formula for the geometric series which we encountered
before. In particular, as n becomes large, an converges to the equilibrium amount of drug in
the body

lim
n→∞

an =
d

p
. (6)

The same reasoning can be applied to general first order linear difference equations with
nonconstant coefficients,

xn+1 = an xn + bn , (7a)

x0 = c . (7b)

By tracing out the same steps as before, we obtain the following general form of the solution.

Theorem 1. The solution to the general first order difference equation (7) is given by

xn = c

n−1∏
j=0

aj +
n−1∑
k=0

bk

n−1∏
j=k+1

aj . (8)
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Remark 1. Note that the sum and product in (8) are nested, i.e. the expression reads

n−1∑
k=0

bk

n−1∏
j=k+1

aj = b0 a1 · · · an−1 + · · ·+ bn−2 an−1 + bn−1 . (9)

Proof. We prove this formula by induction. For n = 0, the formula clearly reproduces the
initial value x0 = c. Let us now assume that the formula holds for some n ≥ 0. Then

xn+1 = an xn + bn

= an

(
c
n−1∏
j=0

aj +
n−1∑
k=0

bk

n−1∏
j=k+1

aj

)
+ bn

= c
n∏
j=0

aj +
n−1∑
k=0

bk

n∏
j=k+1

aj + bn

= c
n∏
j=0

aj +
n∑
k=0

bk

n∏
j=k+1

aj . (10)

This completes the inductive step.

Example 1. The linear, constant coefficient equation

xn+1 = a xn + b , (11)

an instance of which we encountered already in Problem 1, has solution

xn = x0

n−1∏
j=0

a+
n−1∑
k=0

b
n−1∏
j=k+1

a

= an x0 + b
n−1∑
k=0

an−1−k

= an x0 + b
n−1∑
j=0

aj

=

x0 + n b if a = 1

an x0 + b
an − 1

a− 1
if a 6= 1 ,

(12)

where the first step is a direct use of the general expression (8) and the last step is again
due to the formula for the geometric series.

Example 2. The difference equation

xn+1 = (n+ 1)xn + 2n (n+ 1)! , (13)

x0 = 1 (14)
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has solution

xn =
n−1∏
j=0

(j + 1) +
n−1∑
k=0

2k (k + 1)!
n−1∏
j=k+1

(j + 1)

= n! +
n−1∑
k=0

2k (k + 1)!
n!

(k + 1)!

= n! + n!
2n − 1

2− 1

= n! 2n . (15)

3 Stability of equilibrium points

It is rare for a nonlinear, even first order, difference equation to have a closed-form solution.
We thus seek means to qualitatively describe properties of the solution that can be deduced
from the equation itself independent of whether a closed-form solution is available. Often,
the index n plays the role of a time-like quantity in the modeling regime and the difference
equation describes how a dependent quantity changes in time. In this context, difference
equations are often referred to as discrete dynamical systems. The adjective “discrete” refers
the time-like quantity being an integer index, not a real number.

This section introduces the important concept of equilibrium points and discusses their
stability. We motivate the theory using an (explicitly solvable) example from economics.

Problem 2. A commodity is freely traded. The suppliers of this commodity increase pro-
duction whenever the price is high and decrease production when the price is low. Buyers,
on the other hand, react adversely to changes in price. Moreover, due to the time it takes a
supplier to complete a unit of the product, changes in production always lag behind changes
in price. Under the hypothesis that the market price is the price at which supply equals
demand, does the market adjust to a stable equilibrium?

Note that this problem is not fully specified yet, and that we also have not yet defined the
precise meaning of “stable” and “equilibrium”. To proceed further, we make the simplest
modeling assumptions that capture the essence of this problem.

First, we assume discrete market periods, labeled with integer n. Let pn denote the price
of the commodity, dn the demand, and sn the supply in period n. Second, we assume that
the price-demand and price-supply relationships are linear, i.e.

dn = −md pn + bd (16)

and

sn+1 = ms pn + bs , (17)
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where md and ms are positive. The delay in the reaction of the supply side to changes in
price is manifest in (17) through the dependence of the supply on the price of the previous
market period. Finally, the market price hypothesis is expressed as

dn = sn . (18)

By combining (16), (17), and (18), we obtain a first order linear difference equation for pn,
namely

pn+1 = −ms

md

pn +
bd − bs
md

. (19)

An equilibrium price p∗ is a price that does not change from one period to the next. Thus,
at the equilibrium, we must have

p∗ = −ms

md

p∗ +
bd − bs
md

(20)

and therefore

p∗ =
bd − bs
md −ms

. (21)

The behavior of this model can be visualized in a so-called cobweb diagram. The difference
equation (19) is of the form pn+1 = f(pn). The procedure is as follows.

• Draw the graph of f into an x-y coordinate plane.

• Choose an initial value p0 on the x-axis.

• Find the first iterate by moving vertically until intersecting the graph of f .

• Find the next iterate by moving horizontally until hitting the line x = y, then vertically
until intersecting the graph of f . Repeat.

Figures 1–3 show the resulting cobweb diagrams for three different values of the ratio
ms/md. We can distinguish three regimes.

(i) When ms/md < 1, the slope of the graph of f has magnitude less than one. The
distance from the equilibrium price p∗ decreases in each market period, see Figure 1.
Such a market is called stable.

(Mathematically, we speak of asymptotic stability whenever pn → p∗ as n → ∞; see
Definition 1 below.)

(ii) When ms/md = 1, the slope of the graph of f has magnitude one. The distance from
the equilibrium point neither decreases nor increases; pn oscillates between two values,
see Figure 2. This market is still called stable.

(Mathematically, we say that the sequence pn is a 2-cycle. The equilibrium price p∗ is
called stable, but not asymptotically stable.)
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Figure 1: Asymptotically stable equilibrium price.

(iii) When ms/md = 1, the slope of the graph of f has magnitude greater than one. The
distance from the equilibrium price p∗ increases in each market period, see Figure 3.
Such a market is called unstable.

This result can be summarized as follows.

Theorem 2 (Cobweb Theorem of Economics). A market is stable if and only if the suppliers
are no more sensitive to price than the consumers.

Remark 2. We could have arrived at this conclusion more directly by noting that (19)
is a linear, constant coefficient difference equation. Therefore, its solution is covered by
Example 1 with a = −ms/md and b = (bd− bs)/md. The explicit solution (12) shows that pn
remains bounded as n→∞ if and only if |a| ≤ 1, i.e. if ms ≤ md. However, the pedagogical
value of going the graphical route is that it suggests how stability may be defined and verified
in cases where no closed form solution is available. This is the subject of the remainder of
this section.

We now proceed to discussing stability for general first order difference equations of the
form

xn+1 = f(xn) . (22)

Definition 1. A number x∗ is called an equilibrium point or fixed point of the difference
equation (22) if

x∗ = f(x∗) . (23)
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Figure 2: Stable, but not asymptotically stable equilibrium price.

Definition 2. An equilibrium point x∗ of the difference equation (22) is called

(i) stable if for every ε > 0 there exists some δ > 0 such that |xn−x∗| ≤ ε for every n ≥ 1
whenever |x0 − x∗| ≤ δ.

(ii) attracting if there exists some η > 0 such that

lim
n→∞

xn = x∗ (24)

whenever |x0 − x∗| ≤ η.

(iii) asymptotically stable if it is stable and attracting.

In other words, an equilibrium point is stable if a solution remains nearby whenever it
starts sufficiently close to the equilibrium point. Asymptotic stability is a stronger property.
A solution that starts sufficiently close to an asymptotically stable equilibrium point will not
only remain nearby, but will actually be “attracted” by it.

Remark 3. An equilibrium point can be attracting without being stable. An example is
the difference equation

xn+1 =

{
2xn if |xn| < 1 ,

0 if |xn| ≥ 1 .
(25)
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Figure 3: Unstable equilibrium price.

Here x∗ = 0 is clearly an attracting equilibrium point, but the condition for stability fails.
(Working out the details of this argument is a good exercise for those of you interested in
Analysis; for our present purposes this is more a mathematical curiosity.)

In many situations, asymptotic stability is easy to verify. A first, simple result is the
following.

Theorem 3. Let x∗ be an equilibrium point of the difference equation (22) with continuously
differentiable right hand side f .

(i) If |f ′(x∗)| < 1, then x∗ is an asymptotically stable equilibrium point.

(ii) If |f ′(x∗)| > 1, then x∗ is an unstable equilibrium point.

Proof. First, consider the case when |f ′(x∗)| < 1. Since f ′ is continuous, there exist η > 0
and L < 1 such that |f ′(x)| < L for all x ∈ [x∗ − η, x∗ + η]. Let us assume that x0, . . . , xn
lie in this η-neighborhood of x∗. Then

|x∗ − xn+1| = |f(x∗)− f(xn)|
= |f ′(ξn)| |x∗ − xn|
≤ L |x∗ − xn| , (26)

where the second step is an application of the mean value theorem which asserts the existence
of some ξn ∈ [x∗, xn] such that equality holds. Since L < 1, estimate (26) shows that xn+1 is
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also contained in the same η-neighborhood of x∗ and we can iterate the argument to conclude
that

|x∗ − xn| ≤ Ln |x∗ − x0| → 0 (27)

as n→∞. This proves part (i).
If, on the other hand, |f ′(x∗)| > 1, by continuity of f ′ there exist η > 0 and L > 1 such

that |f ′(x∗)| > L for all x ∈ [x∗ − η, x∗ + η]. Take any x0 in this η-neighborhood of x∗. By
re-tracing the argument above, we find that

|x∗ − xn| ≥ Ln |x∗ − x0| (28)

so long as xn remains in the η-neighborhood of x∗. However, since L > 1, the right hand
side grows without bounds as n → ∞. This implies that there exists an n ∈ N such that
xn /∈ [x∗ − η, x∗ + η]. Thus, x∗ is not stable and we have also proved part (ii).

Remark 4. When |f ′(x∗)| = 1, this simple test is inconclusive and a more sophisticated
analysis is required. Some theorems based on higher derivatives of f are given in [1]. However,
there is no easy criterion that is sufficient and necessary for stability; if standard results fail,
equations have to be investigated on a case-by-case basis.

Example 3. Re-considering the market model from Problem 2 in the framework of Theo-
rem 3, we have, from (19), that

f(x) = −ms

md

x+
bd − bs
md

(29)

and therefore

f ′(x) = −ms

md

. (30)

Thus, by Theorem 3, the equilibrium point p∗ is asymptotically stable if ms < md and
unstable if ms > md. This coincides with our previous analysis.

Example 4. Consider the difference equation

xn+1 = cosxn . (31)

Since f(x) = cos x is decreasing from 1 to 0 on the interval [0, π/2] and g(x) = x is increasing
from 0 to π/2 on the same interval, the graphs of the two functions must intersect at some
point x∗ ∈ (0, π/2). Similar arguments show that this is the only point of intersection. Thus,
the difference equation has x∗ as its only equilibrium point. Since f ′(x) = sinx, we must
have |f ′(x∗)| < 1 and we conclude that the equilibrium point is asymptotically stable. (You
can try this out on your calculator by repeatedly hitting the cos-key on any input.)
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4 Periodic Points and Cycles

In Problem 2 we have already encountered the situation where a solution to a difference
equation alternates between two values. This concept easily generalizes to the situation
when the solution returns to the starting point after cycling through a finite number of
points. As in the previous section, we consider first order difference equations of the form

xn+1 = f(xn) . (32)

Definition 3. We say that a is a k-periodic point if it is an equilibrium point of the difference
equation

yn+1 = fk(yn) . (33)

Note that we write fk to denote the kth composition of f with itself. Thus, f 2(x) =
f(f(x)), f 3(x) = f(f(f(x))), etc.; in this context, it is not the kth power of f .

Definition 4. A k-cycle is the orbit {a, f(a), . . . , fk−1(a)} of a k-periodic point a.

Definition 5. We say that a k-periodic point a is stable, asymptotically stable, or unstable
if a is a stable, asymptotically stable, or unstable equilibrium point of (33), respectively.

Remark 5. It can be shown that all the k-periodic points in a k-cycle have the same stability
property. Thus, we can say “k-cycle” instead of “k-periodic point” in Definition 5.

Remark 6. It may happen that an orbit starting at some initial point b becomes periodic
only after a finite number of steps. Such orbits are called eventually periodic.

Since the discussion of periodic points can be reduced to the discussion of equilibrium
points for the map (33), everything we have said about stability of equilibrium points nat-
urally translates into results on the stability of cycles. For future reference, we state the
following elementary stability criterion for 2-cycles.

Theorem 4. Suppose that the difference equation (32) has a 2-cycle {a, b} and that f is
continuously differentiable. Then

(i) the 2-cycle is asymptotically stable if |f ′(a) f ′(b)| < 1,

(ii) the 2-cycle is unstable if |f ′(a) f ′(b)| > 1.

The proof is a direct application of Theorem 3 to (33). The details are left as an exercise
to the reader.
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5 The logistic equation

Difference equations are frequently used to model phenomena of population growth, spread
of disease, or market dynamics as in the example of the previous section. One of the simplest
such population models is the logistic difference equation, which we introduce in the following.

Problem 3. Describe the growth of a population of a single species in a habitat of con-
strained resources.

Let us discuss a set of modeling assumptions that allow us to obtain a fully specified, yet
simple quantitative description. As for the market model of Section 3, we assume discrete
periods of equal length with regard to physical time, labeled with integer n. The size of the
population in period n is denoted pn.

When resources are plenty, the number of offspring per model period will be a fraction b
of the size of the population in existence. Likewise, the number of deaths per model period
will be another fraction d of the population size. Thus,

pn+1 = (1 + b− d) pn ≡ µ pn . (34)

Since this equation describes good, unconstrained conditions, we expect that b > d and
therefore µ > 1. The solution to (34),

pn = µn p0 , (35)

then grows without bounds as n→∞.
A model for the growth of a population in a habitat of constrained resources must there-

fore contain a term that limits the growth when the population size becomes large. There are
many effects that may be taken into account and models can become very complicated. How-
ever, with the following simplifying assumptions, we may obtain a very simple, yet powerful
model. To facilitate the discussion, we assume that the habitat consists of s discrete sites.
(This assumption is not essential; we would reach the same conclusion in a corresponding
continuum set-up.) We further assume that

(i) In each model period, there is a loss of population, for example due to fights or star-
vation, proportional to the probability that two or more individuals occupy the same
site.

(ii) Individuals move through the habitat at random, i.e. each individual is equally likely
to occupy each site.

(iii) The habitat is large and sparsely populated. More precisely, we assume that 1� p�√
s.

Thus, it is our task to compute the probability of two individuals occupying the same site,
and to simplify the resulting expression according to assumption (iii).
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We recognize that the problem is precisely the “birthday problem” we discussed earlier.
As in the solution of the birthday problem, we first compute the probability that no two
individuals occupy the same site,

P (no two on same site) =
s · (s− 1) · · · · · (s− p+ 1)

sp

=
s!

sp (s− p)!

∼
√

2πs ss e−s

sp
√

2π(s− p) (s− p)s−p e−(s−p)

=

√
s

s− p exp

(
(p− s) ln

s− p
s
− p
)

(36)

We now approximate this expression up to first order terms in the small quantity p/s. We
use two-term Taylor approximations of the functions

ln(1 + x) ≈ x− 1

2
x2 , ex ≈ 1 + x ,

1

1− x ≈ 1 + x , and
√

1 + x ≈ 1 +
1

2
x . (37)

Then

ln
s− p
s

= ln

(
1− p

s

)
≈ −p

s
− 1

2

p2

s2
, (38)

so that, since 1� p2/s� p3/s2,

exp

(
(p− s) ln

s− p
s
− p
)
≈ exp

(
(s− p)

(
p

s
+

1

2

p2

s2

)
− p
)
≈ exp

(
−p

2

2s

)
≈ 1− p2

2s
. (39)

Further, √
s

s− p =

√
1

1− p/s ≈
√

1 +
p

s
≈ 1 +

1

2

p

s
. (40)

Altogether, noting that 1� p2/s� p/s� p3/s2,

P (no two on same site) ≈
(

1 +
1

2

p

s

)
·
(

1− p2

2s

)
≈ 1− p2

2s
(41)

and therefore

P (at least two on same site) = 1− P (no two on same site) ≈ p2

2s
. (42)

We conclude the following.

Theorem 5. The probability that at least two of p randomly placed individuals share the
same site in a large sparsely populated habitat is asymptotically proportional to p2.
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Theorem 5 suggests that we should augment the unconstrained growth equation (34) by
a loss term proportional to p2n. The resulting difference equation is the logistic difference
equation

pn+1 = µ pn − ν p2n (43)

with positive parameters µ and ν. The qualitative behavior is essentially governed by a single
parameter. Indeed, setting pn = µ/ν xn, we obtain the logistic equation in its standard form

xn+1 = µxn (1− xn) . (44)

Remark 7. In this model we allow the number of individuals to be any positive real number.
When the number of individuals is large, this is a useful simplification. However, when the
number of individuals is small, the discreteness of p becomes significant. Moreover, in real
population dynamics, random fluctuations can have dramatic impact on small populations.

Remark 8. If we reconsider the derivation leading to Theorem 5 carefully, we see that
the constant ν must be small and inversely proportional to the artificial parameter s. For
purposes of this discussion, let ν = 1/s. Then a nontrivial equilibrium point of the logistic
difference equation (43) is p∗ = s (µ− 1). (A more detailed discussion of equilibrium points
is given in the next section.) Since the equilibrium point should not depend on the artificial
parameter s, we must therefore require that µ be very close to 1 as s becomes large. This
corresponds to choosing units of time where one iteration of the logistic map corresponds to
a very small amount of real time.

Remark 9. The statement of Remark 8 can also be re-interpreted as follows. Choose the
arbitrary normalization p∗ = 1, so that µ = 1 + 1/s. Then (43) coincides with the so-called
explicit Euler scheme [5] for the numerical solution of the logistic differential equation

dp

dt
= p− p2 , (45)

commonly written in the form

pn+1 = pn + h (pn − p2n) , (46)

where h = 1/s is the so-called step size. In other words, our derivation of the model is
valid precisely in the parameter regime where the logistic difference equation is a good
approximation to the logistic differential equation.

6 Bifurcations

In the following, we study the qualitative behavior of the first order difference equations of
the form (23) as a function of a parameter. By qualitative behavior we mean the number of
equilibrium points, of k-cycles, and their stability. We speak of a bifurcation when a small
change in the parameter causes a change in the qualitative behavior of the equation.

We illustrate the concept using the logistic equation in the form (44) where µ is the
parameter we will vary.
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Equilibrium points. We first determine the equilibrium points of the logistic difference
equation. Setting

f(x) = µx (1− x) , (47)

the fixed point equation x = f(x) has two solutions

x∗1 = 0 and x∗2 =
µ− 1

µ
. (48)

Since f ′(x) = µ− 2µx, we have, in particular,

f ′(x∗1) = µ and f ′(x∗2) = 2− µ . (49)

By Theorem 3,

• x∗1 is an asymptotically stable equilibrium point for |µ| < 1 and an unstable equilibrium
point for |µ| > 1.

• x∗2 is an asymptotically stable equilibrium point for 1 < µ < 3 and an unstable equi-
librium point for µ < 1 or µ > 3.

The points µ = 1 and µ = 3 are bifurcation points since the stability of the equilibrium
points is changing as the parameter µ varies across.

2-cycles. It can be shown (homework exercise!) that the logistic map has a 2-cycle when-
ever µ > 3 with orbit {a, b} where

a =
1 + µ−

√
(µ− 3)(µ+ 1)

2µ
, (50)

b =
1 + µ+

√
(µ− 3)(µ+ 1)

2µ
. (51)

(52)

Moreover, by Theorem 4, this 2-cycle is asymptotically stable for 3 < µ < 1 +
√

6 and is
unstable for µ > 1 +

√
6.

Thus, not only does the equilibrium point x∗2 lose stability at µ = 3, but a stable 2-cycle
emerges. There is a third bifurcation point at µ = 1 +

√
6 where the 2-cycle loses stability

and, as can be shown by lengthy calculation, a stable 4-cycle emerges.
The behavior analyzed so far is summarized in Figure 4. This graph is called a bifurcation

diagram. The horizontal axis shows the parameter while the vertical axis shows the location
of equilibrium points and cycles. In standard terminology, the bifurcation at µ = 1 is called
a transcritical bifurcation and the bifurcation at µ = 3 a pitchfork bifurcation.
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Figure 4: Partial bifurcation diagram for the logistic map. Shown are the branches which
we have explicitly computed. Unstable branches are dotted, stable branches indicated by
solid lines. The equilibrium points are in black, the 2-cycle in gray. At the point where the
2-cycle becomes unstable, a stable 4-cycle emerges. This 4-cycle and its further bifurcations
are not shown.

Higher cycles and chaos. The analysis of the bifurcation structure beyond the 2-cycle is
rather complicated; [4] has some more information and references to the research literature.
In particular, there are no closed form expressions for most branches of the bifurcation
diagram.

On the other hand, it is comparatively easy to find the stable cycles by numerical com-
putation. For each value of µ, choose an arbitrary starting point and iterate the logistic map
a large number of times. Since an asymptotically stable cycle is attracting, the value of xn
for n large will now be very close to the stable cycle. Keep iterating and plot the next many
iterates—they will now approximately trace out the stable cycle in the bifurcation diagram.
Figure 5 shows the result of such a computation (with the additional twist that the graph is
shaded according to the probability of a certain pixel being visited during the iteration).

Note that for each initial value you will approach exactly one stable equilibrium point or
cycle. For the logistic map it is known that only one starting point will suffice. In general,
additional analysis or systematic search is required to verify that all possible attracting sets
have been found.

Through a combination of analysis and numerical computation, the following picture has
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Figure 5: Numerically computed bifurcation diagram for the logistic map. The computa-
tion can only show the attracting sets. The graph is taken from [6] where the method of
computation is explained in detail. Their parameter r is the same as µ in (44).

been established [3, 4, 6].

• As µ is increased, each 2k-cycle has a bifurcation point where it becomes unstable and
bifurcates into a stable 2k+1-cycle.

The first such bifurcation point is the break-up of the stable equilibrium point or,
equivalently, 20-cycle into the 21-cycle at µ = 3 as shown in Figure 4. All other such
bifurcation points are qualitatively similar.

• If `k denote the interval on the µ-axis in which the 2k cycle is stable, then

lim
k→∞

`k
`k+1

= δ = 4.6692016 . . . . (53)

This number is called the Feigenbaum constant and is universal across large classes
of maps. In particular, the fact that this limit exists implies that this cascade of
bifurcations, often referred to as a period doubling cascade, takes place in a finite
interval on the µ-axis. For the logistic map, the cascade ends at µ ≈ 3.57, as can be
seen in Figure 5.
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• For 3.57 . µ < 4, cycles of all periods exist. For most values of µ, all cycles are
unstable and we speak of chaos. However, in the interior of this interval there are
islands of stability in which stable 3, 5, . . . -periodic cycles exist, each with their own
period doubling cascade.

• Beyond µ = 4, solutions diverge for almost all initial values.

We close this section with a short remark on chaos. Mathematical definitions of “chaos”
are somewhat problem dependent, but usually involve the following features.

• Sensitive dependence on initial conditions. More precisely, if the system is started from
any two nearby initial points, then the distance between the resulting solutions grows
exponentially in time, or with the number of iterations, until it is on the order of the
system size.

• Dense orbits. Every orbit of the system comes arbitrarily close to every point in the
domain of definition, or at least in a “massive” subset of the domain of definition,
called a strange attractor.

The notion of chaos is important for a number of reasons. First, it is a mathematically
challenging task to describe and quantify the behavior of chaotic systems in meaningful
ways. A lot of new and important mathematics has emerged from the pursuit of such
questions. Second, it shows that very simple systems can have very complicated behavior—
the logistic difference equation being a case in point. Third, the presence of chaotic dynamics
implies severe practical limits to the predictive power of a model. Since orbits diverge and
mix at an exponential rate, doubling the accuracy of the initial values (which are typically
measurements) will not double the time interval over which an accurate predication can be
achieved, but only increase this time interval by a fixed amount. This severely restricts the
ability to achieve accurate long-range predictions.

7 Generating functions revisited

Let us now consider difference equations of order greater than one. Earlier this semester, we
discussed the method of generating functions for the solution of certain difference equations.
In the following, we review the method and state the theory from a different viewpoint.

In this section, we assume that the difference equation is linear and homogeneous with
constant coefficients. For simplicity, we will only consider second order equations, although
everything we do will generalizes to higher order in a natural way. Such an equation can be
written in the form

an+1 + c1 an + c2 an−1 = 0 ; (54)

for the time being, we leave the initial conditions unspecified. Now define the generating
function

φ(x) =
∞∑
i=0

ai x
i . (55)
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Then, by expanding the left hand expression and ordering terms by powers in x, we find
that

(1 + c1 x+ c2 x
2)φ(x) = a0 + (a1 + c1 a0)x , (56)

or

φ(x) =
a0 + (a1 + c1 a0)x

1 + c1 x+ c2 x2
. (57)

Thus, we need to find the explicit power series expansion of (57) whose coefficients are the
solution to the difference equation (54). Let us recall that, in the ring of formal power series
(cf. [2], p. 22),

1

1− x = 1 + x+ x2 + x3 + . . . (58)

and
1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + . . . . (59)

Let us denote the roots of the polynomial 1 + c1 x + c2 x
2 by µ1 and µ2. (In the field of

complex numbers, these roots always exist. In the following, we will consider examples with
real roots only; the general discussion, however, applies equally to the complex case.) We
must distinguish two cases.

Two distinct roots. This is the case we encountered previously, e.g. when determining
the general form of the Fibonacci sequence. In this case, we know that φ has a partial
fraction decomposition of the form

φ(x) =
A′

µ1 − x
+

B′

µ2 − x
=

A

1− x

µ1

+
B

1− x

µ2

= A

(
1 +

x

µ1

+
x2

µ2
1

+ . . .

)
+B

(
1 +

x

µ2

+
x2

µ2
2

+ . . .

)
, (60)

where A and B are some constants which depend on a0 and a1 and which are determined
by the partial fraction decomposition, and where A′ = Aµ1 and B′ = B µ2. We now take
the point of view that, although we could work out the values of the constants through the
computation above, we simply note that this computation shows that the general form of
the solution to the difference equation (54) is

an = Aµ−n1 +B µ−n2 . (61)

The constants A and B can then be determined by the condition that the initial conditions
are replicated by (61).
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Double Roots. When the two roots µ1 = µ2 ≡ µ coincide—we speak of a double root—a
partial fraction decomposition of the form (60) is not possible. Instead, we refer to (59) and
write

φ(x) =
A′ (µ− x) +B′

(µ− x)2

=
A

1− x

µ

+
B(

1− x

µ

)2

= A

(
1 +

x

µ
+
x2

µ2
+ . . .

)
+B

(
1 + 2

x

µ
+ 3

x2

µ2
+ . . .

)
. (62)

As in the case of two distinct roots, A and B are two constants which depend on a0 and
a1. In principle, they could be determined by explicitly carrying all constants through the
computation above. Instead, however, we only note that the general form of the solution to
the difference equation (54) is

an = Aµ−n +B (n+ 1)µ−n . (63)

As before, the constants A and B can be determined by the condition that the initial
conditions are replicated by (63).

We have now effectively proved a theorem on the general solution of (54). We can rewrite
the final result in a form more commonly encountered by making the following modifications
to the expressions above. First, notice that we can make the prefactor of the second term in
(63) proportional to n rather than n+1. The “missing” bit can then be grouped together with
the first term, forcing a redefinition of the constant A. Second, µ is a root of 1+c1 x+c2 x

2 if
and only if λ = 1/µ is a root of x2 + c1 x+ c2. We can therefore express the solution in terms
of roots of the latter polynomial. Finally, we can rescale the difference equation (54) by an
arbitrary constant without changing any of the above procedure. With these modifications,
we restate our result as follows.

Definition 6. The characteristic polynomial of the difference equation

c0 an+1 + c1 an + c2 an−1 = 0 (64)

is the polynomial
p(x) = c0 x

2 + c1 x+ c2 . (65)

Theorem 6. Let λ1 and λ2 denote the roots of the characteristic polynomial (65). Then
any solution to (64) is of the form

(i) when λ1 6= λ2, then an = Aλn1 +B λn2 ,

(ii) when λ1 = λ2 ≡ λ, then an = Aλn +B nλn,

for arbitrary constants A and B.
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Remark 10. Strictly speaking, our derivation breaks down when one of the roots is zero.
For a true second order equation, however, c2 6= 0 and this cannot happen. Otherwise we
are back to the case of first order equations discussed in Section 2.

Remark 11. Linear Algebra provides an alternative way to prove Theorem 6. The differ-
ence equation can be written as a system of two first-order difference equations. It turns
out that the characteristic polynomial of the difference equation equals the characteristic
polynomial of the resulting matrix. When the roots are distinct, the system can be solved
by diagonalization; in the case of a double root, the Jordan normal form is used to solve the
equation.

We now give two typical application examples of the theory. The first example also
illustrates that Theorem 6 is particularly useful when the difference equation is augmented
not by initial conditions, but by some other conditions on the solution. In this case, a
straightforward application of the method of generating functions would not be possible.

Problem 4 (Gambler’s ruin). A gambler is repeatedly playing a game in which he is to gain
1 Euro with probability q and lose 1 Euro with probability 1− q. Assume that the gambler
has n Euros to play. When he is down to zero, we say that the gambler is ruined and cannot
continue gambling. He will also quit when he has reached a pre-set target of N Euros. What
is the probability that the gambler is ruined?

Let pn denote the probability of being ruined when owning n Euros. If n = 0, the
gambler is ruined for sure, thus p0 = 1. When n = N , the gambler quits without being
ruined, so pN = 0. For 0 < n < N , the gambler keeps playing. If he wins, he will be
ruined with probability pn+1 in the next iteration of the game; if he loses, he will be ruined
with probability pn−1. Since the first alternative occurs with probability q and the second
alternative occurs with probability 1− q, we deduce that

pn = q pn+1 + (1− q) pn−1 . (66)

This is clearly a difference equation of the form (64) with characteristic polynomial

p(x) = q x2 − x+ (1− q) (67)

whose roots are

λ1,2 =
1±

√
1− 4 q (1− q)

2 q
=

1±
√

(1− 2 q)2

2 q
(68)

so that

λ1 = 1 and λ2 =
1− q
q

. (69)

We can now apply Theorem 6. There are two distinct cases.
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Fair game. When the probability of losing and of winning the game is both 1
2
, we speak

of a fair game. In this case, both roots of the characteristic polynomial equal λ = 1, so that
the general solution to (66) is

pn = A+B n . (70)

Since p0 = 1, we must have A = 1. Then pN = 0 gives 1 + BN = 0 so that B = −1/N and
therefore

pn = 1− n

N
. (71)

In particular, if the gambler owns a finite amount of money n, but does not quit gambling,
we can represent this by taking the limit N → ∞. In this case, the gambler will be ruined
with probability 1.

Biased game. When q 6= 1
2
, the two roots in (69) are distinct. In this case,

pn = A+B

(
1− q
q

)n
. (72)

Since p0 = 1, we must have A+B = 1. Moreover, since pN = 0, we find that

A+B

(
1− q
q

)N
= 0 . (73)

Solving for A and B, we obtain

A = −

(
1− q
q

)N
1−

(
1− q
q

)N and B =
1

1−
(

1− q
q

)N . (74)

Inserting this result back into (72), we finally obtain

pn =

(
1− q
q

)n
−
(

1− q
q

)N
1−

(
1− q
q

)N . (75)

Let us again ask the question what happens when the gambler does not quit gambling, i.e.
take the limit N →∞ with n fixed. If q < 1

2
, then (1− q)/q > 1 so that

pn(N)→ 1 as N →∞ , (76)

i.e., the gambler is ruined for sure; if q > 1
2
, then (1− q)/q < 1 so that

pn(N)→
(

1− q
q

)n
as N →∞ . (77)
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We see that in a game which is biased in favor of the gambler, there is non-zero probability
of “survival” even if he will never quit.

We summarize these results as follows.

Theorem 7 (Gambler’s theorem). If you don’t quit playing a game that’s not in your favor,
you will be ruined for sure.

We close this section with an example from [3] which illustrates interpretation and pos-
sible qualitative behavior of a second order linear difference equation or, equivalently, of a
two-variable first order system of difference equations.

Problem 5 (Romeo and Juliet). Model the onset of a love/hate relationship between Romeo
and Juliet, taking into account

(i) the change of feeling for each other while apart, and

(ii) the change of feeling for each other in response to the other’s emotions.

Again, we construct a discrete time model with n denoting units of time, say days.
Romeo’s feelings for Juliet on day n are quantified by the variable Rn, positive values repre-
senting love and negative values representing hate. Similarly, Juliet’s feelings for Romeo are
quantified by the variable Jn. Before Romeo and Juliet meet on day n = 0, their feelings
for each other are neutral, so J0 = R0 = 0. We will first formulate a simple model for
the dynamics of their relationship and then investigate whether zero is a stable equilibrium
point, or whether a small perturbation may evolve into something better (or worse).

When Romeo and Juliet are on their own, Rn and Jn evolve independent of each other.
Let us therefore focus on Rn only. We assume a simple linear model,

Rn+1 = aRRn (78)

where aR is a positive parameter. If aR was negative, Romeo’s feeling toward Julia would
alternate from love to hate on consecutive days, which is not what we would expect. When
0 < aR < 1, then Romeo’s intrinsic love for Juliet fades out, when aR > 1, it increases with
time.

In the presence of Julia, Romeo also reacts to her feelings toward him. This feedback is
modeled by a second term in Romeo’s equation,

Rn+1 = aRRn + pR Jn , (79)

where the feedback coefficient pR can be either positive or negative. The different possible
combinations of aR and pR give rise to four romantic styles:

pR < 0 pR > 0

0 < aR < 1 hermit cautious lover

aR > 1 likes to tease, but not to please eager beaver
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The equation for Juliet’s feeling toward Romeo shall be symmetric to Romeo’s equation,
so that the combined system of difference equations reads

Rn+1 = aRRn + pR Jn , (80a)

Jn+1 = aJ Jn + pJ Rn . (80b)

We can now investigate the outcome of their love affair by studying these difference
equations using Theorem 6. The crucial observation is that a system of two difference
equations can always be formulated as a single second order difference equation, and vice
versa. Instead of proving this general statement, we proceed by example. Shifting the index
of the first equation and multiplying the second by pR, we obtain

Rn+2 = aRRn+1 + pR Jn+1 , (81a)

pR Jn+1 = pR aJ Jn + pR pJ Rn , (81b)

so that

Rn+2 = aRRn+1 + pR aJ Jn + pR pJ Rn (82)

The remaining Jn can be eliminated by using the unshifted version of (80a), and we finally
obtain

Rn+2 − (aR + aJ)Rn+1 + (aJ aR − pJ pR)Rn = 0 . (83)

The characteristic polynomial of this difference equation is

p(x) = x2 − (aR + aJ)x+ aJ aR − pJ pR (84)

which has roots

λ1,2 =
aJ + aR ±

√
(aR + aJ)2 − 4 (aJ aR − pJ pR)

2

=
aJ + aR ±

√
(aR − aJ)2 + 4 pJ pR

2
. (85)

A comprehensive analysis of the solution is rather involved and best done in the linear algebra
framework (as this would allow to make simultaneous statements about Romeo’s and Juliet’s
feelings). However, we can make a few basic observations from (85):

• When aR and aJ are similar in magnitude and pJ and pR have opposite signs (i.e. exactly
one of the two counter-reacts to the other’s feelings), then the expression under the
square root may be negative. In this case, the difference equation can still be solved,
but the roots are complex numbers which manifests itself in oscillatory behavior of the
solutions. The relationship then gets into a love-hate cycle which may grow or decay
in amplitude; see the right hand graph in Figure 6.
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Figure 6: The Romeo-Juliet system with neutral self-induced growth coefficients aR = aJ =
1 and positive coupling coefficients pR = pJ = 0.1 (left) vs. mixed coupling coefficients
pR = −0.1, pJ = 0.1 (right). The shaded region in the left hand graph indicates initial
configurations which evolve into growing mutual hate. On the right, the relationship evolves
into a love-hate cycle independent of the initial conditions.

• A relationship can only develop if at least one of the roots is greater than one, so that
the general solution from Theorem 6 has at least one growing component.

• We cannot infer from (83) that if Romeo’s love for Juliet is growing that Juliet’s love
for Romeo is also growing. We need to explicitly look at the corresponding Juliet
solution.

• Initialization of this model is very important. In a parameter regime where love can
grow, hate can also grow. As the left graph in Figure 6 shows, initial configurations
which are close can result in completely different outcomes.

• This model can only represent the onset of an affair, as there are no limiting terms
which would keep initially growing solutions bounded as n → ∞. This situation is
very much like for the simple, unconstrained model (34) as opposed to the full logistic
equation for the dynamics of a one-species population.

8 Inhomogeneous linear equations

The theory developed in the previous section may seem rather special. However, there are
two important principles that show that the study of linear homogeneous problems is relevant
in a much more general context.
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The first principle concerns the general solution to inhomogeneous linear equations of the
form (2), and will be formulated below. The next principle concerns the study of equilibrium
points to nonlinear equations and will be discussed in Section 9 below.

To formulate the statement in succinct terms, we need to introduce the concept of linear
independence. Let x

(1)
n , . . . , x

(j)
n denote j sequences (for example, j solutions to a differ-

ence equation with different starting values). Then we say that x
(1)
n , . . . , x

(j)
n are linearly

independent or simply independent provided that

α1 x
(1)
n + · · ·+ αj x

(j)
n = 0 (86)

for every n ∈ N implies that α1 = · · · = αj = 0. Without discussing the geometric content
of this statement (this can be found in any book on Linear Algebra), we simply note that in
the case of j = 2 sequences, the condition for independence reduces to the simple statement
that one sequence is not a multiple of the other.

Recall the inhomogeneous linear equation (2),

xn+1 = a0(n)xn + a1(n)xn−1 + · · ·+ ak−1(n)xn−k+1 + b(n) . (87)

We say that the equation

xn+1 = a0(n)xn + a1(n)xn−1 + · · ·+ ak−1(n)xn−k+1 . (88)

is the associated homogeneous equation. Then the following is true.

Theorem 8 (Superposition Principle). Let pn solve the inhomogeneous equation (87) for

some arbitrary starting values. Further, let y
(1)
n , . . . , y

(k)
n solve the associated homogeneous

equation (88). Set
xn = pn + α1 y

(1)
n + · · ·+ αn y

(k)
n (89)

for some α1, . . . , αk. Then

(i) xn is a solution to the inhomogeneous equation (87).

(ii) Vice versa, any solution to (87) can be written in the form (8) provided that y
(1)
n , . . . , y

(k)
n

are independent.

Part (i) is easily proved by direct substitution of (89) into (87). We leave this as an
exercise to the reader. The proof of part (ii) involves nontrivial Linear Algebra and shall
therefore be omitted.

When the coefficients a1, . . . , ak depend on n, this theorem, though true and important
for the development of the theory, is of not much practical help. In fact, it can be argued that
such equations are really nonlinear “in disguise” and that we therefore should not expect to
be able to develop a universal solution procedure.

If, on the other hand, the coefficients a1, . . . , ak are independent of n, then Theorem 6
(respectively its generalization to order k > 2) provides a method for solving the homo-
geneous problem in a systematic way. So one only needs to guess a single inhomogeneous
solution, which is often possible, to automatically obtain all solution to the inhomogeneous
equation.
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Example 5 (Model for GDP growth). An idealized model for the evolution of the gross
domestic product (GDP) of a country assumes that the GDP in year n is given as the sum
of three components,

yn = cn + gn + in , (90)

where cn denotes the consumer spending, assumed to be proportional to the current economic
climate as quantified by the GDP, gn denotes the government spending, assumed constant,
and in the induced investment, assumed to be proportional to the growth rate of the GDP
during the previous year. Thus, we can write

yn = α yn + β (yn−1 − yn−2) + γ , (91)

for some nonnegative parameters α, β, and γ with α < 1.

The superposition principle for this model takes a very simple form. A particular solution
is given by the equilibrium solution, where

y∗ = α y∗ + β (y∗ − y∗) + γ , (92)

so that
y∗ =

γ

1− α . (93)

Two independent solutions to the homogeneous problem can be obtained via the method of
generating functions, e.g. in the form of Theorem 6. We first illustrate this for the special
case where α = 1

2
and β = γ = 1. Then y∗ = 2 is the equilibrium solution, and the

characteristic polynomial for the homogeneous equation is given by

p(x) = 1
2
x2 − x+ 1 (94)

with roots
λ1,2 = 1± i =

√
2 eiπ/4 . (95)

The general solution is therefore

yn = 2 + c1 λ
n
1 + c2 λ

n
2 . (96)

Since λ1 = λ2, where λ2 denotes the complex conjugate of λ2, the solution is real-valued if
and only if c1 = c2. Setting c1 = a + ib and recalling that eiθ = cos θ + i sin θ, we then find
that

yn = 2 + 2 Re(c1 λ
n
1 ) = 2 + 2n/2+1

(
a cos(nπ/4)− b sin(nπ/4)

)
, (97)

where a and b are determined by the initial conditions. We see that the solution is oscillating
about the equilibrium point with growing amplitude. Thus, the given parameter values
describe an unstable economy.

More generally, the roots of the characteristic polynomial to the homogeneous part of
(92) are given by

λ1,2 =
β ±

√
β2 − 4(1− α)β

2(1− α)
. (98)
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In the oscillatory case, when 4(1−α) > β, so that λ1,2 are a pair of complex conjugate roots,
we compute for i = 1, 2 that

|λi|2 = λ1 λ2 =
β

1− α , (99)

so that the amplitude of the oscillations is growing whenever β > 1 − α, remains constant
for β = 1− α, and decreases for β < 1− α. We conclude that the economy is stable if and
only if β ≤ 1− α.

The nonoscillatory case can be analyzed similarly; this shall be left as an exercise to the
reader.

9 Equilibrium points for nonlinear equation of higher

order

For nonlinear equation of higher order, explicit solutions are rare. Thus, we would like to
extend the study of equilibrium points and cycles to this situation, so that at least some
qualitative properties can be deduced in the absence of fully explicit solutions.

In analogy with the setting of Section 3, particularly equation (22), we consider constant
coefficient nonlinear second order equations in the form

xn+2 = f(xn+1, xn) . (100)

An equilibrium point x∗ is then characterized by

x∗ = f(x∗, x∗) . (101)

We are again interested in the question of stability of such equilibrium points. To provide
an intuitive argument, which could easily be made rigorous, we write

xn = x∗ + δn (102)

where we think of δn as an initially small perturbation to an equilibrium point; we want to
study whether the perturbation δn grows or decreases. Plugging (102) into (100), we can
obtain an approximate simpler expression on the right hand side by using a tangent plane
approximation—the first two terms in a multivariate Taylor expansion—at the point x∗,
whence

x∗ + δn+2 ≈ f(x∗, x∗) +
∂f(x∗, x∗)

∂x
δn+1 +

∂f(x∗, x∗)

∂y
δn , (103)

where ∂f/∂x denotes the derivative of f with respect to its first argument with the second
argument held constant, and ∂f/∂y denotes the derivative of f with respect to its second
argument with the first argument held constant. Due to (101), we obtain an approximate
equation for δn, called the linearization of (100) about the equilibrium point x∗,

δn+2 =
∂f(x∗, x∗)

∂x
δn+1 +

∂f(x∗, x∗)

∂y
δn . (104)
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This equation is a linear, second order, constant coefficient, homogeneous difference equation.
Thus, the growth of the perturbation will depend on the absolute value of the roots of its
characteristic polynomial. This motivates the following analog of Theorem 3.

Theorem 9. Let x∗ be an equilibrium point of the difference equation (100) with continu-
ously differentiable right hand side f . Let λ1 and λ2 denote the roots of the characteristic
polynomial of its linearization about the equilibrium point.

(i) If |λ1| < 1 and |λ2| < 1, then x∗ is an asymptotically stable equilibrium point.

(ii) If |λ1| > 1 or |λ2| > 1, then x∗ is an unstable equilibrium point.

As for Theorem 3, there are cases where the criterion is inconclusive, namely when |λi| ≤ 1
with identity for at least one of the roots.

A complete proof is more difficult, but essentially similar to the proof of Theorem 3.
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