Diagonalization

Marcel Oliver

ESM 2B, Spring 2003

1 Main Idea

Given a matrix $A \in M(n \times n)$, is it possible to find a basis in which the associated linear transformation is represented by a diagonal matrix? In other words, can we find an invertible matrix S such that

$$
\begin{equation*}
D=S^{-1} A S \tag{1}
\end{equation*}
$$

is diagonal? Writing

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) \quad \text { and } \quad S=\left(\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{n} \\
\mid & & \mid
\end{array}\right)
$$

i.e. $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are the columns of the matrix S, equation (1) can be written $S D=A S$, or

$$
\left(\begin{array}{ccc}
\mid & & \mid \\
\lambda_{1} \boldsymbol{v}_{1} & \cdots & \lambda_{n} \boldsymbol{v}_{n} \\
\mid & & \mid
\end{array}\right)=A\left(\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{n} \\
\mid & & \mid
\end{array}\right) .
$$

If we separate this matrix equation n column vector equations, we get

$$
\lambda_{1} \boldsymbol{v}_{1}=A \boldsymbol{v}_{1}, \ldots, \lambda_{n} \boldsymbol{v}_{n}=A \boldsymbol{v}_{n}
$$

In other words, the entries on the diagonal of D are the eigenvalues of A, and the columns of S are the corresponding eigenvectors. Therefore, our task is the following:

Find n eigenvalues, and n linearly independent eigenvectors of A.

2 Computing Eigenvalues and Eigenvectors

As an example, let's consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & -i & i \\
i & 0 & -i \\
-i & i & 0
\end{array}\right)
$$

Step 1: Compute and factor the characteristic polynomial

The characteristic polynomial is defined

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I) .
$$

It is zero if and only if $A-\lambda I$ is singular, i.e. if and only if the equation $A \boldsymbol{v}=\lambda \boldsymbol{v}$ has a nontrivial solution, i.e. if and only if λ is an eigenvalue. In order to find the zeros, try to write the characteristic polynomial as a product of linear factors:

$$
p_{A}(\lambda)= \pm\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right) .
$$

Notice that some linear factor $\lambda-\lambda_{k}$ may occur more than once. In that case it is crucial that the dimension of the corresponding eigenspace, i.e. the dimension of the solution space of the linear system $\left(A-\lambda_{k} I\right) \boldsymbol{v}_{k}=0$ has the same multiplicity. If its dimension is less than the multiplicity of the eigenvalue, the matrix cannot be diagonalized.

In our example,

$$
\begin{aligned}
p_{A}(\lambda) & =\left|\begin{array}{ccc}
-\lambda & -i & i \\
i & -\lambda & -i \\
-i & i & -\lambda
\end{array}\right| \\
& =-\lambda^{3}+(-i)^{3}+i^{3}-3(-\lambda) i(-i) \\
& =-\lambda\left(\lambda^{2}-3\right) \\
& =-\lambda(\lambda+\sqrt{3})(\lambda-\sqrt{3}) .
\end{aligned}
$$

Therefore the three eigenvalues are $\lambda_{1}=0, \lambda_{2}=-\sqrt{3}, \lambda_{2}=\sqrt{3}$. Since the eigenvalues are distinct, we already know that the matrix must be diagonalizable.

Step 2: Compute the eigenvectors for each eigenvalue

For each of the λ_{k} where $k=1, \ldots, n$ we have to solve the homogeneous equation

$$
\left(A-\lambda_{k}\right) \boldsymbol{v}_{k}=0 .
$$

In this example,

$$
\left(A-\lambda_{1}\right) \boldsymbol{v}_{1}=\left(\begin{array}{ccc}
0 & -i & i \\
i & 0 & -i \\
-i & i & 0
\end{array}\right)=0 .
$$

After row-reduction, we obtain the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

thus the first eigenvector is $\boldsymbol{v}_{1}=(-1,-1,-1)^{T}$. Next,

$$
\left(A-\lambda_{2}\right) \boldsymbol{v}_{2}=\left(\begin{array}{ccc}
\sqrt{3} & -i & i \\
i & \sqrt{3} & -i \\
-i & i & \sqrt{3}
\end{array}\right)=0
$$

Let's row-reduce this matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\sqrt{3} & -i & i \\
i & \sqrt{3} & -i \\
-i & i & \sqrt{3}
\end{array}\right) \xrightarrow{\substack{\mathrm{R} 1 / \sqrt{3} \rightarrow \mathrm{R} 1 \\
i \mathrm{R} 2 \rightarrow \mathrm{R} 2 \\
i \mathrm{R} 3 \rightarrow \mathrm{R} 3}}\left(\begin{array}{ccc}
1 & -\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} \\
-1 & \sqrt{3} i & 1 \\
1 & -1 & \sqrt{3} i
\end{array}\right) \xrightarrow{\substack{\mathrm{R} 1+\mathrm{R} 2 \rightarrow \mathrm{R} 2 \\
\mathrm{R} 2+\mathrm{R} 3 \rightarrow \mathrm{R} 3}} \\
& \left(\begin{array}{ccc}
1 & -\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{3}} i & 1+\frac{i}{\sqrt{3}} \\
0 & \sqrt{3} i-1 & 1+\sqrt{3} i
\end{array}\right) \xrightarrow{\begin{array}{c}
-\frac{\sqrt{3}}{2} i \mathrm{R} 2 \rightarrow \mathrm{R} 2 \\
\mathrm{R} 3 /(\sqrt{3} i-1) \rightarrow \mathrm{R} 3
\end{array}}\left(\begin{array}{ccc}
1 & -\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} \\
0 & 1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\
0 & 1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{array}\right) \\
& \xrightarrow{\begin{array}{l}
\mathrm{R} 1-\frac{i}{\sqrt{3}} \mathrm{R} 2 \rightarrow \mathrm{R} 1 \\
\mathrm{R} 2-\mathrm{R} 3 \rightarrow \mathrm{R} 3
\end{array}}\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2}+\frac{\sqrt{3}}{2} i \\
0 & 1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Therefore,

$$
\boldsymbol{v}_{2}=\left(\begin{array}{c}
\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
-1
\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
-1
\end{array}\right)
$$

where the computation for \boldsymbol{v}_{3} is very similar to the previous one. Hence, we can write

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\sqrt{3} & 0 \\
0 & 0 & \sqrt{3}
\end{array}\right), \quad S=\left(\begin{array}{ccc}
-1 & \frac{1}{2}+\frac{\sqrt{3}}{2} i & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\
-1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i & \frac{1}{2}+\frac{\sqrt{3}}{2} i \\
-1 & -1 & -1
\end{array}\right)
$$

Step 3: Check your solution

It is easiest to check that $S D=A S$, because this does not require the computation of a matrix inverse. In this example,
$S D=\left(\begin{array}{ccc}-1 & \frac{1}{2}+\frac{\sqrt{3}}{2} i & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\ -1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i & \frac{1}{2}+\frac{\sqrt{3}}{2} i \\ -1 & -1 & -1\end{array}\right)\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -\sqrt{3} & 0 \\ 0 & 0 & \sqrt{3}\end{array}\right)=\left(\begin{array}{ccc}0 & -\frac{\sqrt{3}}{2}-\frac{3}{2} i & \frac{\sqrt{3}}{2}-\frac{3}{2} i \\ 0 & -\frac{\sqrt{3}}{2}+\frac{3}{2} i & \frac{\sqrt{3}}{2}+\frac{3}{2} i \\ 0 & \sqrt{3} & -\sqrt{3}\end{array}\right)$
$A S=\left(\begin{array}{ccc}0 & -i & i \\ i & 0 & -i \\ -i & i & 0\end{array}\right)\left(\begin{array}{ccc}-1 & \frac{1}{2}+\frac{\sqrt{3}}{2} i & \frac{1}{2}-\frac{\sqrt{3}}{2} i \\ -1 & \frac{1}{2}-\frac{\sqrt{3}}{2} i & \frac{1}{2}+\frac{\sqrt{3}}{2} i \\ -1 & -1 & -1\end{array}\right)=\left(\begin{array}{ccc}0 & -\frac{\sqrt{3}}{2}-\frac{3}{2} i & \frac{\sqrt{3}}{2}-\frac{3}{2} i \\ 0 & -\frac{\sqrt{3}}{2}+\frac{3}{2} i & \frac{\sqrt{3}}{2}+\frac{3}{2} i \\ 0 & \sqrt{3} & -\sqrt{3}\end{array}\right)$.

