Gaussian elimination:
 How to solve systems of linear equations

Marcel Oliver

February 12, 2020

Step 1: Write out the augmented matrix

A system of linear equation is generally of the form

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b}, \tag{1}
\end{equation*}
$$

where $A \in M(n \times m)$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ are given, and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)^{T}$ is the vector of unknowns. For example, the system

$$
\begin{array}{r}
x_{2}+2 x_{3}-x_{4}=1 \\
x_{1}+x_{3}+x_{4}=4 \\
-x_{1}+x_{2}-x_{4}=2 \\
2 x_{2}+3 x_{3}-x_{4}=7
\end{array}
$$

can be written in the form (1) with

$$
A=\left(\begin{array}{cccc}
0 & 1 & 2 & -1 \\
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 2 & 3 & -1
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{l}
1 \\
4 \\
2 \\
7
\end{array}\right)
$$

To simplify notation, we write A and \boldsymbol{b} into a single augmented matrix,

$$
M=\left(\begin{array}{cccc|c}
0 & 1 & 2 & -1 & 1 \tag{2}\\
1 & 0 & 1 & 1 & 4 \\
-1 & 1 & 0 & -1 & 2 \\
0 & 2 & 3 & -1 & 7
\end{array}\right) .
$$

Step 2: Bring M into reduced row echelon form

The goal of this step is to bring the augmented matrix into reduced row echelon form. A matrix is in this form if

- the first non-zero entry of each row is 1 , this element is referred to as the pivot,
- each pivot is the only non-zero entry in its column,
- each row has at least as many leading zeros as the previous row.

For example, the following matrix is in row echelon form, where $*$ could be any, possibly non-zero, number:

$$
\left(\begin{array}{lllllll}
0 & 1 & * & 0 & * & * & 0 \\
0 & 0 & 0 & 1 & * & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Three types of elementary row operations are permitted in this process, namely
(A) exchanging two rows of M,
(B) multiplying a row by a non-zero scalar,
(C) adding a multiple of one row to another row.

As an example, we row-reduce the augmented matrix (2):

$$
\begin{aligned}
& \left.\left(\begin{array}{cccc|c}
0 & 1 & 2 & -1 & 1 \\
1 & 0 & 1 & 1 & 4 \\
-1 & 1 & 0 & -1 & 2 \\
0 & 2 & 3 & -1 & 7
\end{array}\right) \xrightarrow{\text { reorder rows }}\left(\begin{array}{cccc|c}
1 & 0 & 1 & 1 & 4 \\
-1 & 1 & 0 & -1 & 2 \\
0 & 1 & 2 & -1 & 1 \\
0 & 2 & 3 & -1 & 7
\end{array}\right) \xrightarrow{\mathrm{R} 1+\mathrm{R} 2 \rightarrow \mathrm{R} 2} \text { (} \begin{array}{cccc|c}
1 & 0 & 1 & 1 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 1 & 2 & -1 & 1 \\
0 & 2 & 3 & -1 & 7
\end{array}\right) \xrightarrow{\substack{\mathrm{R} 3-\mathrm{R} 2 \rightarrow \mathrm{R} 3 \\
\mathrm{R} 4-2 \mathrm{R} 2 \rightarrow \mathrm{R} 4}}\left(\begin{array}{cccc|c}
1 & 0 & 1 & 1 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 1 & -1 & -5 \\
0 & 0 & 1 & -1 & -5
\end{array}\right) \xrightarrow{\mathrm{R} 4-\mathrm{R} 3 \rightarrow \mathrm{R} 4} \rightarrow \\
& \left(\begin{array}{cccc|c}
1 & 0 & 1 & 1 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 1 & -1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\substack{\mathrm{R} 1-\mathrm{R} 3 \rightarrow \mathrm{R} 1 \\
\mathrm{R} 2-\mathrm{R} 3 \rightarrow \mathrm{R} 2}}\left(\begin{array}{cccc|c}
1 & 0 & 0 & 2 & 9 \\
0 & 1 & 0 & 1 & 11 \\
0 & 0 & 1 & -1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Step 3: Zero, one, or many solutions?

There are two fundamentally different situations:

- The matrix A is regular. In this case, the left-hand block of M has been reduced to the identity matrix. There is exactly one solution, independent of which vector \boldsymbol{b} you started out with.
- The matrix A is degenerate. In this case, the left-hand block of the row-reduced augmented matrix has more columns than non-zero rows. Then, dependent on which vector \boldsymbol{b} you started out with, there is either no solution at all (the system is inconsistent), or an infinite number of solutions (the system is underdetermined).

If the rightmost column of the row-reduced augmented matrix has a nonzero entry in a row that is otherwise zero, the system is inconsistent.

Otherwise, the general solution has the following structure. It is the sum of a particular solution of the inhomogeneous equation $A \boldsymbol{x}=\boldsymbol{b}$ and the general solution of the homogeneous equation $A \boldsymbol{x}=0$.

Step 4: Write out the solution

- If the left-hand block of the row-reduced matrix is not square, make it square by adding or removing rows of zeros. This has to be done in such a way that the leading 1 in each row (the pivot) lies on the diagonal!
- The rightmost column of the row-reduced augmented matrix is a particular solution.
- To find a basis for the general solution of the homogeneous system, proceed as follows: Take every column of the row-reduced augmented matrix that has a zero on the diagonal. Replace that zero by -1 . The set of these column vectors is the basis you need.

In the example above, a particular solution is $(9,11,-5,0)^{T}$ and the general solution of the homogeneous equation is a one-dimensional subspace with basis vector $(2,1,-1,-1)^{T}$. Therefore, the general solution to the inhomogeneous equation $A \boldsymbol{x}=\boldsymbol{b}$ is the line

$$
\boldsymbol{x}=\left(\begin{array}{c}
9 \\
11 \\
-5 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right)
$$

Another example: Assume that the row-reduced matrix is

$$
\left(\begin{array}{cccccc|c}
0 & 0 & 1 & -3 & 0 & 4 & -3 \\
0 & 0 & 0 & 0 & 1 & 6 & 7
\end{array}\right) .
$$

Padding the matrix with the required rows of zeros gives

$$
\left(\begin{array}{cccccc|c}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -3 & 0 & 4 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and the general solution is

$$
\boldsymbol{x}=\left(\begin{array}{c}
0 \\
0 \\
-3 \\
0 \\
7 \\
0
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+\lambda_{3}\left(\begin{array}{c}
0 \\
0 \\
-3 \\
-1 \\
0 \\
0
\end{array}\right)+\lambda_{4}\left(\begin{array}{c}
0 \\
0 \\
4 \\
0 \\
6 \\
-1
\end{array}\right) .
$$

Step 5: Check your solution

By multiplying A with the vectors representing the solution, you can easily verify that the computation is correct. In our example,

$$
\begin{aligned}
A\left(\begin{array}{c}
9 \\
11 \\
-5 \\
0
\end{array}\right) & =\left(\begin{array}{cccc}
0 & 1 & 2 & -1 \\
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 2 & 3 & -1
\end{array}\right)\left(\begin{array}{c}
9 \\
11 \\
-5 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
2 \\
7
\end{array}\right)=\boldsymbol{b} \\
A\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right) & =\left(\begin{array}{cccc}
0 & 1 & 2 & -1 \\
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 2 & 3 & -1
\end{array}\right)\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

