Problem 3 of homework 9:

(E)

The random variable G_{x} can take the values x^{2} (in case we win) and $-x$ (in case we lose). Since we win with probability p_{x} we lose with probability $1-p_{x}$:

$$
\begin{aligned}
& E\left[G_{x}\right]=p_{x} x^{2}+\left(1-p_{x}\right)(-x)=p_{x}\left(x^{2}+x\right)-x . \\
& E\left[G_{2}\right]=-\frac{13}{8}, \quad E\left[G_{3}\right]=-\frac{3}{2}, \quad E\left[G_{4}\right]=-\frac{1}{4}, \quad E\left[G_{5}\right]=\frac{5}{2}, \\
& E\left[G_{6}\right]=\frac{15}{8}, \quad E\left[G_{7}\right]=0, \quad E\left[G_{8}\right]=-\frac{7}{2} .
\end{aligned}
$$

(A)

If we always guess the number obtained in the previous-statistically independent-trial, then this number plays the role of a random variable X, and the expected payout for a particular value of the random variable as has been calculated in (E) is now a function of the random variable X. The expected payout is therefore

$$
\begin{aligned}
E\left[E\left[G_{X}\right]\right] & =\sum_{x=2}^{8} p_{x} E\left[G_{x}\right] \\
& =\frac{1}{16} \frac{-13}{8}+\frac{2}{16} \frac{-3}{2}+\frac{3}{16} \frac{-1}{4}+\frac{4}{16} \frac{5}{2}+\frac{3}{16} \frac{15}{8}+\frac{2}{16} 0+\frac{1}{16} \frac{-7}{2} \\
& =\frac{27}{64} .
\end{aligned}
$$

