Engineering and Science Mathematics 2B

Midterm I

March 5, 2003

For questions with an easy (E) and an advanced (A) version, choose either the easy or the advanced version, not both. You may make a different choice for each question.

1. (a) Find the normal equation for the plane that passes through the points $(0,-1,1)$, $(2,2,-1)$, and $(1,1,3)$.
(b) Find the distance of the point $(1,1,1)$ to this plane.
2. Find the general solution to the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ with

$$
A=\left(\begin{array}{cccc}
1 & -2 & 1 & 1 \tag{10}\\
2 & -4 & 2 & -2 \\
2 & -4 & 2 & 6
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
1 \\
-2 \\
6
\end{array}\right)
$$

Check your answer!
3. (E) Consider the matrix A from the previous question. Show that $A \boldsymbol{x}=\boldsymbol{c}$ does not have a solution when

$$
\boldsymbol{c}=\left(\begin{array}{c}
1 \tag{4}\\
1 \\
-1
\end{array}\right)
$$

(A) Consider the matrix A from the previous question. Characterize all vectors $\boldsymbol{c} \in \mathbb{R}^{3}$ such that $A \boldsymbol{x}=\boldsymbol{c}$ is solvable.
4. (E) Decide whether the following set of vectors is a basis of \mathbb{R}^{3}. Justify your answer.

$$
\boldsymbol{v}_{1}=\left(\begin{array}{c}
1 \tag{4}\\
2 \\
-1
\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right)
$$

(A) Prove that the columns of any $n \times k$ matrix with $n<k$ are linearly dependent.
5. (E) Let $A=\left(\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)$.
(a) Find the eigenvalues and eigenvectors of A.
(b) Write out a diagonal matrix D and an invertible matrix S such that $D=$ $S^{-1} A S$.
(c) Check your result by explicitly performing the matrix multiplications $S D$ and $A S$.

$$
(8+4+4)
$$

(A) (a) Find the matrix A representing the linear transformation on \mathbb{R}^{2} that maps the triangle with vertices $\boldsymbol{a}=(0,0), \boldsymbol{b}=(1,0), \boldsymbol{c}=(1,1)$ onto the triangle with vertices $\boldsymbol{a}^{\prime}=(0,0), \boldsymbol{b}^{\prime}=\left(\frac{1}{2}, \frac{3}{2}\right), \boldsymbol{c}^{\prime}=(2,2)$.
(b) Diagonalize A. I.e., find a diagonal matrix D and a change of coordinate S such that $D=S^{-1} A S$.
(c) Use the result from (b) to give a concise geometric description of the linear transformation.

$$
(5+10+5)
$$

6. Let V be the vector space of continuous functions on \mathbb{R} spanned by the basis

$$
E=\left\{e^{i x}, e^{-i x}\right\}
$$

with the usual addition and scalar multiplication.
(a) Find the matrix D which represents the derivative operator on V with respect to the basis E.
(b) Let

$$
T=\{\sin x, \cos x\} .
$$

Explain why T is also a basis of V, and find the matrix S for the change of basis from T to E.
(Recall that $e^{i x}=\cos x+i \sin x$.)
(c) Find the matrix C which represents the derivative with respect to the new basis T.
7. (E) If $A \in M(n \times n)$, show that $B=A^{T} A$ is a symmetric matrix.
(Recall that a matrix C is symmetric if $C=C^{T}$.)
(A) Prove that the eigenvalues of any real symmetric matrix are real.

