Engineering and Science Mathematics 2B

Homework 1

due February 7, 2003

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Find an equation for the plane that contains the point $(2,4,6)$ and the line

$$
\boldsymbol{x}=\left(\begin{array}{l}
7 \\
3 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right)
$$

2. (E) Find the angle between the vectors $(3,-4,0)$ and $(-2,1,0)$, and find a vector that is perpendicular to both.
(A) Prove, by writing out in component form or by following the suggestion in Edwards \& Penney, p. 733), that

$$
(a \times b) \times c=(a \cdot c) b-(b \cdot c) a .
$$

3. (E) Find the distance between the point $(5,12,-13)$ and the plane with equation $3 x+4 y+5 z=12$.
(A) Show that the distance of the point $\left(x_{0}, y_{0}, z_{0}\right)$ to the plane $a x+b y+c z=d$ is given by

$$
D=\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

4. Let $z=3+4 i$ and $w=-5$. Sketch the following quantities in the complex plane: z^{*}, $z+w, z-w, z w, z / w$. (This is sometimes called an Argand diagram plot.)
5. Simplify the following expressions:
(a) $\operatorname{Re} \frac{1+i}{1-i}$
(b) $\operatorname{Im}(\exp 2 i z)$
(c) $\ln i$
6. (E) Find the (complex) roots of the equation $z^{2}-2 z+2=0$.
(A) Find, in terms of x and y, those points $z=x+i y$ that satisfy the equation

$$
\frac{\operatorname{Im} z^{2}}{z^{2}}=-i
$$

