Engineering and Science Mathematics 2B

Homework 2

due February 14, 2003

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

- 1. A matrix A is called normal if $AA^H = A^H A$, where A^H denotes the Hermitian conjugate of A. Show (a) that $(A^H)^{-1} = (A^{-1})^H$, and (b) that A^{-1} is normal if A is normal.
- 2. Let

$$B = \begin{pmatrix} 0 & -i & i \\ i & 0 & -i \\ -i & i & 0 \end{pmatrix}, \qquad C = \frac{1}{\sqrt{8}} \begin{pmatrix} \sqrt{3} & -\sqrt{2} & -\sqrt{3} \\ 1 & \sqrt{6} & -1 \\ 2 & 0 & 2 \end{pmatrix}$$

Are these matrices real, diagonal, symmetric, antisymmetric, singular, orthogonal, Hermitian, anti-Hermitian, unitary, and/or normal?

3. (E) Let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 3 & 4 \end{pmatrix}.$$

Compute AB and BA. Conclude that (i) $AB \neq BA$, and (ii) that AB = 0 does not imply that either A or B is the zero matrix.

- (A) Prove that AB = 0 implies that at least one of the matrices is singular.
- 4. (E) Determine if the following vectors are linearly dependent or linearly independent:

$$\begin{pmatrix} -4\\0\\1\\5 \end{pmatrix}, \quad \begin{pmatrix} -3\\-1\\0\\4 \end{pmatrix}, \quad \begin{pmatrix} 0\\4\\3\\6 \end{pmatrix}.$$

(A) Prove the following statement: Let v_1, \ldots, v_n be linearly independent. If a vector \boldsymbol{w} can be written

$$\boldsymbol{w} = \sum_{k=1}^n \alpha_k \, \boldsymbol{v}_k \, ,$$

the choice of the coefficients $\alpha_1, \ldots, \alpha_n$ is unique.

5. Solve the following system of linear equations using the method taught in class.

_

$$x_1 + 3 x_2 - 5 x_3 = 4$$

$$x_1 + 4 x_2 - 8 x_3 = 7$$

$$-3 x_1 - 7 x_2 + 9 x_3 = -6$$

6. (E) Solve the following system of linear equations using the method taught in class.

$$x_1 + 3 x_2 + x_3 = 1$$

-4 x₁ - 9 x₂ + 2 x₃ = -1
-3 x₂ - 6 x₃ = -3

(A) Find conditions on α such that following system of linear equations has (a) exactly one solution, (b) no solutions, or (c) an infinite number of solutions; give all solutions where they exist.

$$x_1 + \alpha x_2 = 1$$

$$x_1 - x_2 + 3 x_3 = -1$$

$$2 x_1 - 2 x_2 + \alpha x_3 = -2$$