Engineering and Science Mathematics 2B

Homework 6

due March 22, 2003, before 22:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Let f be a function on the interval $[0,2 \pi]$ with Fourier representation

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \sum_{k=-\infty}^{\infty} c_{k} e^{i k x} \tag{*}
\end{equation*}
$$

Show that if f is real, then $c_{k}^{*}=c_{-k}$.
2. Assume f is as in $\left(^{*}\right)$. Find the Fourier coefficients for
(a) $f\left(x-x_{0}\right)$ where x_{0} is a constant,
(b) $f(-x)$,
(c) $f^{*}(x)$,
(d) $\int_{s}^{t} f(\xi) d \xi$, assuming that $c_{0}=0$,
(e) $f^{\prime}(x)$.
3. Compute the Fourier cosine series of $f(x)=|x|$ on the interval $[-\pi, \pi]$.
4. (E) Let

$$
\boldsymbol{v}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right)
$$

Compute the projection of \boldsymbol{v} onto the subspace spanned by the orthonormal vectors

$$
\boldsymbol{e}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), \quad \boldsymbol{e}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

(A) An odd function of period 2π is approximated by a Fourier sine series having only N terms. The error in the approximation is measured by the square deviation

$$
E_{N}=\int_{-\pi}^{\pi}\left[f(x)-\sum_{n=1}^{N} b_{n} \frac{\sin n x}{\sqrt{\pi}}\right]^{2} d x
$$

By differentiating E_{N} with respect to the coefficients b_{n}, find the values of b_{n} that minimize E_{n}.
5. Give the value to which the Fourier series of the function $f(x)=(x+\pi)^{2}$, defined on the interval $[-\pi, \pi]$, converges at each of the following points: $x=-\pi, 0, \pi, 2 \pi$.
6. Compute the complex Fourier series of the function $f(x)=e^{x}$ on the interval $[-\pi, \pi]$.

