Engineering and Science Mathematics 2B

Midterm I

March 3, 2004

1. (E) Find the distance of the point $\boldsymbol{p}=(0,1,0)^{T}$ to the plane

$$
(x-a) \cdot n=0
$$

where $\boldsymbol{a}=(1,0,1)^{T}$ and $\boldsymbol{n}=\frac{1}{\sqrt{3}}(1,-1,-1)^{T}$.
(A) Show that two lines in \mathbb{R}^{3} lie in a plane only if either they intersect or they are parallel.
2. Find the general solution to the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ with

$$
A=\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \tag{10}\\
-1 & -2 & -3 & -4 \\
1 & 1 & 1 & 1
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{c}
6 \\
-10 \\
4
\end{array}\right)
$$

Check your answer!
3. (E) Consider the matrix A from the previous question. Show that $A \boldsymbol{x}=\boldsymbol{c}$ does not have a solution when

$$
\boldsymbol{c}=\left(\begin{array}{l}
1 \tag{8}\\
0 \\
0
\end{array}\right)
$$

(A) Consider the matrix A from the previous question. Characterize all vectors $\boldsymbol{c} \in \mathbb{R}^{3}$ such that $A \boldsymbol{x}=\boldsymbol{c}$ is solvable.
4. Let $A=\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$.
(a) Find the eigenvalues and eigenvectors of A.
(b) Write out a diagonal matrix D and an invertible matrix S such that $D=S^{-1} A S$.
(c) Check your result by explicitly performing the matrix multiplications $S D$ and $A S$.
5. (E) Give an example of two matrices A and B such that $A B \neq B A$. (An explicit calculation is required!)
(A) Let $A, B \in M(n \times n)$ such that there exists a basis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of \mathbb{R}^{n} that is also a set of eigenvectors for both A and B. Show that, in this case, $A B=B A$.
6. (E) Let

$$
\boldsymbol{v}_{1}=\left(\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right)
$$

(a) Let the linear transformation F be the reflection about the plane spanned by the standard unit vectors \boldsymbol{e}_{1} and \boldsymbol{e}_{2}. Find the matrix representing F in the standard basis.
(b) Check that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ form a basis of \mathbb{R}^{3}.
(c) Find the matrix representing F in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
(d) Let $\boldsymbol{a}=4 \boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}+\boldsymbol{v}_{3}$; compute $F(\boldsymbol{a})$ in the basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
(A) Let P_{2} be the vector space of polynomials of degree less or equal than 2 .
(a) Show that

$$
F(p)=\left(\begin{array}{l}
p(0) \\
p(1) \\
p(2)
\end{array}\right)
$$

is a linear transformation from P_{2} into \mathbb{R}^{3}.
(b) Find the matrix representing F when P_{2} is endowed with basis $B=\left\{1, x, x^{2}\right\}$, and \mathbb{R}^{3} is endowed with its standard basis.
(c) Find the matrix representing

$$
G(p)=\left(\begin{array}{l}
p^{\prime}(0) \\
p^{\prime}(1) \\
p^{\prime}(2)
\end{array}\right)
$$

with respect to the same pair of bases.
(d) Is F invertible? Is G invertible? Explain.
(e) Find a matrix A such that

$$
A\left(\begin{array}{l}
p(0) \\
p(1) \\
p(2)
\end{array}\right)=\left(\begin{array}{l}
p^{\prime}(0) \\
p^{\prime}(1) \\
p^{\prime}(2)
\end{array}\right)
$$

for every $p \in P_{2}$.

