Engineering and Science Mathematics 2B

Homework 7

due March 31, 2004, before 12:00

Normal questions and advanced questions (A) are worth 5 points; easy questions (E) are worth 4 points. Complete either the easy, or the advanced version, not both.

1. Let $f(t)=\sin t$ on the interval $\left[0, \frac{\pi}{2}\right)$, and periodically extended outside of this interval, be represented by the complex Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} \frac{e^{4 n t i}}{\sqrt{\frac{\pi}{2}}}
$$

Compute the Fourier coefficients c_{n}.
2. Find the Fourier transform of $f(x)=e^{-|x|}$.
3. Show that $\mathcal{F}(f(x+a))=e^{i a \xi} \mathcal{F}(f)$.
4. (E) Show that $\mathcal{F}\left(f^{\prime}\right)=i \xi \mathcal{F}(f)$.

Hint: Integration by parts. You may assume that all boundary terms are zero when integrating by parts.
(A) By taking the Fourier transform of the equation

$$
\frac{d^{2} u}{d x^{2}}-u=f
$$

show that the solution $u(x)$ can be written as

$$
u(x)=\frac{-1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{i \xi x} \tilde{f}(\xi)}{1+\xi^{2}} d \xi
$$

where $\tilde{f}(\xi)$ is the Fourier transform of $f(x)$.
5. Compute the integral
(E) $\int_{-2}^{2} \delta(2 x) \cos x d x$,
(A) $\int_{-2 \pi}^{2 \pi} \delta\left(x^{2}-\pi^{2}\right) \cos x d x$.
6. (E) Let the Heavyside or unit step function be defined by

$$
H(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{2} & \text { for } x=0 \\ 1 & \text { for } x>0\end{cases}
$$

Show that $H^{\prime}(x)=\delta(x)$.
Hint: Integration by parts.
(A) One can define (so-called distributional) derivatives of the δ-function via

$$
\int_{-\infty}^{\infty} f(x) \delta^{(n)}(x) d x=(-1)^{n} f^{(n)}(0)
$$

for any n times differentiable function $f(x)$.
So we may be tempted to write a Taylor series for the δ-function,

$$
\delta(x+a)=\sum_{n=0}^{\infty} \frac{\delta^{(n)}(x)}{n!} a^{n}
$$

It appears that the left side is zero except at $x=-a$, while the right side is zero except at $x=0$. Resolve this paradox.

