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1 Notation

We apply the Gradient and the Conjugate Gradient methods to the problem of
finding the minimum of the quadratic functional

Φ(x) = 1
2 xTAx− xT b , (1)

where A ∈ Rn×n is symmetric and positive definite. Recall that both methods
are descent methods. They construct a minimizing sequence

xk+1 = xk + αk dk (2)

where dk is a descent direction, i.e. dT
k ∇Φ(xk) < 0, so that

Φ(xk + αdk) < Φ(xk) (3)

for small positive values of α. For quadratic functionals (1), the value of α that
minimizes Φ along the line through xk in the direction dk is easily found to be

α =
dT

k rk

dT
kAdk

. (4)

We denote the error in the k-th step by

ek = x− xk , (5)

x being the location of the true minimum, and define the residual

rk = Aek = b−Axk . (6)

The last equality is true since the location of the minimum is the solution of
Ax = b. See the notes from Numerical Methods I for details.

Finally, we introduce the A-norm

‖x‖2
A ≡ xTAx . (7)
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2 Convergence of the Gradient Method

In the gradient method we always walk down the direction of steepest descent,
i.e.

dk = −∇Φ(xk) = rk . (8)

A direct computation of the error norm shows that

‖ek+1‖2
A = ‖x− (xk + αk dk)‖2

A

= ‖ek − αk dk‖2
A

= ‖ek‖2
A − 2αk eT

kAdk + α2
k ‖dk‖2

A

= ‖ek‖2
A − 2

rT
k rk

rT
kArk

eT
kArk +

(rT
k rk)2

(rT
kArk)2

rT
kArk

= ‖ek‖2
A

(
1− (rT

k rk)2

rT
kArk rT

kA
−1rk

)
. (9)

To proceed further, we need the following result.

Lemma 1 (Kantorovich inequality). Let A ∈ Rn×n be symmetric and positive
definite, and let 0 < λmin < λmax denote its smallest and largest eigenvalue,
respectively. Then

min
y 6=0

(yT y)2

yTAy yTA−1y
=

4λmin λmax

(λmin + λmax)2
. (10)

Applying the Kantorovich inequality to the right side of (9) and noting that

1− 4λmin λmax

(λmin + λmax)2
=

(λmin − λmax)2

(λmin + λmax)2
, (11)

we find that

‖ek+1‖A ≤ λmax − λmin

λmax + λmin
‖ek‖A ≡ κ− 1

κ+ 1
‖ek‖A , (12)

where κ = λmax/λmin is the so-called spectral condition number of A.

Proof of the Kantorovich inequality. The Kantorovich inequality (10) is invari-
ant under rescaling of y. It is therefore sufficient to prove it for arbitrary unit
vectors. Let v1, . . . ,vn be an orthonormal basis of Rn consisting of eigenvectors
of A with corresponding eigenvalues λ1, . . . , λn. We can write

y =
n∑

i=1

yi vi (13)

2



so that

‖y‖2
2 =

n∑
i=1

y2
i = 1 , (14)

yTAy =
n∑

i=1

y2
i λi , (15)

yTA−1y =
n∑

i=1

y2
i λ

−1
i . (16)

Thus, proving the Kantorovich inequality reduces to solving the constraint op-
timization problem find the maximum of

g(y) = yTAy yTA−1y (17)

under the constraint
h(y) = yT y − 1 = 0 . (18)

Such maximum must necessarily satisfy

∇g(y) = µ∇h(y) , (19)

where µ is the Lagrange multiplier. By direct computation,

∂g

∂yi
= 2 yi λi yTA−1y + 2 yi λ

−1
i yTAy , (20)

∂h

∂yi
= 2 yi , (21)

so that (19) reads

yi λi yTA−1y + yi λ
−1
i yTAy = µ yi , (22)

or (
λ2

i yTA−1y − λi µ+ yTAy
) yi

λi
= 0 . (23)

The expression in parenthesis is a quadratic equation in λi, and can only be
zero for at most two distinct eigenvalues. Therefore, there can be at most
two non-zero components yi and yj . (If an eigenvalue occurs with multiplicity
larger than one, g(y) depends only on the norm of the projection of y onto the
corresponding eigenspace, so the statement remains valid.) Dividing (22) by yi

and equating the expressions for indices i and j, we obtain

λi

(
y2

i

λi
+
y2

j

λj

)
+
y2

i λi + y2
j λj

λi
= λj

(
y2

i

λi
+
y2

j

λj

)
+
y2

i λi + y2
j λj

λj
, (24)
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or

(y2
j − y2

i )
(
λi

λj
+
λj

λi
− 2

)
= (y2

j − y2
i )

(λi − λj)2

λiλj
. (25)

Therefore, y2
i = y2

j = 1
2 unless λi = λj and, by direct substitution into (17),

candidates for the maximum value are

1
4

(λi + λj)
(

1
λi

+
1
λj

)
=

1
4

(
λi

λj
+ 1

) (
λj

λi
+ 1

)
=

(λi + λj)2

4λi λj
. (26)

The expression in the middle shows that it is increasing in the ratio λi/λj when
λi > λj ; we thus take λi = λmax and λj = λmin to complete the proof.

3 Convergence of the CG Method

Recall that one of the key properties of the Conjugate Gradient method is that
each new iterate is optimal with respect to all descent directions from the so-
called Krylov subspace

Vk = Span{d1, . . . ,dk−1}
= Span{A0r1, . . . , A

k−2r1} . (27)

For details, see the handout on the derivation of the CG method. According to
(6), we can also write

Vk = Span{A1e1, . . . , A
k−1e1} . (28)

Recall also the recursion for the residual,

rk+1 = rk − αk Adk ≡ rk +Awk+1 (29)

where wk+1 is some vector from Vk+1. By definition of ek, we can also write

ek+1 = ek + wk+1 . (30)

We conclude inductively that ek − e1 ∈ Vk for k = 2, 3, . . . , and we can write

ek = e1 +
k−1∑
i=1

γiA
i e1

≡ φk(A) e1 (31)

where

φk(x) =
k−1∑
i=0

γi x
i (32)

is some polynomial of degree k − 1 with φk(0) = 1.
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Since

‖ek‖2
A = (x− xk)TA(x− xk)

= xTAx− 2 xT
kAx + xT

kAxk

= xT b− 2 xT
k b + xT

kAxk

= 2Φ(xk) + xT b , (33)

last term on the right being independent of xk, optimality of xk with respect to
a certain subspace is equivalent to optimality of the A-norm of ek with respect
to the same subspace. In other words, CG is constructed in such a way that
the polynomial φk which appears in (31) is the polynomial that minimizes the
A norm of ek among all polynomials or the same or lesser degree.

As in the proof of the Kantorovich inequality we express e1 in terms of the
orthonormal eigenvectors of A, i.e.

e1 =
n∑

j=1

yj vj , (34)

so that

ek =
n∑

j=1

yj φk(λj) vj , (35)

‖ek‖2
A =

n∑
j=1

y2
j φ

2
k(λj)λj . (36)

Let Pk denote the vector space of polynomials of degree less or equal to k. The
optimality condition of CG can therefore be expressed as

‖ek‖2
A = min

φ∈Pk−1
φ(0)=1

n∑
j=1

y2
j φ

2(λj)λj

≤ min
φ∈Pk−1
φ(0)=1

max
λ∈[λmin,λmax]

φ2(λ)
n∑

j=1

y2
j λj

= min
φ∈Pk−1
φ(0)=1

max
λ∈[λmin,λmax]

φ2(λ) ‖e1‖2
A . (37)

Let Tk denote the Chebychev polynomial of degree k. Then the following is
true.

Lemma 2. If 0 < λmin < λmax, then

min
φ∈Pk

φ(0)=1

max
λ∈[λmin,λmax]

|φ(λ)| = Tk

(
λmax + λmin

λmax − λmin

)−1

≤ 2
(√

κ− 1√
κ+ 1

)k

, (38)

where κ = λmax/λmin.
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Inserting this result into (37), we find that

‖ecg
k ‖A ≤ 2

(√
κ− 1√
κ+ 1

)k−1

‖e1‖A , (39)

whereas for the gradient method, from equation (12),

‖egrad
k ‖A ≤

(
κ− 1
κ+ 1

)k−1

‖e1‖A . (40)

This shows that for poorly conditioned matrices the rate of convergence of the
conjugate gradient method is much better than that of the gradient method.

Proof of Lemma 2. Recall that the Chebychev polynomials of order k on the
interval [−1, 1] can be written in the form

Tk(x) = cos(k arccosx) . (41)

It is clear that |Tk| ≤ 1 on this interval. Moreover, Tk(1) = 1, Tk(−1) = (−1)k,
and Tk has k − 1 distinct extrema on (−1, 1), alternating between 1 and −1.

To realize the minimum on the left of (38), we need a polynomial that is
uniformly small on the interval [λmin, λmax]. Since Tk is of uniform size on
[−1, 1], we are tempted to use it as a template for constructing a candidate
minimizing polynomial by remapping the interval [λmin, λmax] onto [−1, 1] by a
linear affine change of variable `. Setting

φ(x) =
Tk(`(x))
Tk(`(0))

(42)

will then also satisfy φ(0) = 1. The ansatz `(x) = mx + c together with the
requirement that `(λmin) = 1 and `(λmax) = −1 gives

`(x) =
λmax + λmin − 2λ
λmax − λmin

. (43)

Therefore,

max
λ∈[λmin,λmax]

|φ(λ)| = 1
|Tk(`(0))|

max
x∈[−1,1]

|Tk(x)| = Tk

(
λmax + λmin

λmax − λmin

)−1

(44)

To complete the proof of the equality in (38), we need to show that no other
polynomial of degree k can yield a bound lower than (44). Assume the contrary,
and let ψ denote a polynomial satisfying ψ(0) = 1 and

max
λ∈[λmin,λmax]

|ψ(λ)| < max
λ∈[λmin,λmax]

|φ(λ)| . (45)

Then ψ(0)−φ(0) = 0, and the graph of ψ must intersect the graph of φ exactly
k times in the interval [λmin, λmax]. This means that φ − ψ is a polynomial of
degree k with k + 1 zeroes, and must therefore be identically zero.

The proof of the inequality in (38) is a homework exercise.
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