Numerical Methods II

Midterm Exam

March 31, 2004

1. You solve the differential equation

$$
y^{\prime}(t)=A(t) y(t) .
$$

(a) Your choice of $A(t)$ is a time-dependent 2×2 matrix with eigenvalues as shown below. For which values of t do you consider the system "stiff"? Explain briefly!

(b) You try different solvers from your solver collection: RK4 and BDF4 with constant stepsize, and RK54 and Nordsieck-BDF4 with adaptive stepsize. Match the solvers to the solution graphs below, stating briefly one characteristic feature for each.

(Note that the curves are vertically shifted for better legibility, and only one of the components is shown.)
2. For

$$
A=\left(\begin{array}{ll}
2 & 1 \tag{10}\\
1 & 2
\end{array}\right)
$$

find a plane rotation matrix R such that $R^{T} A R$ is diagonal.
3. Let A be a real symmetric $n \times n$ matrix, and set

$$
R(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} A \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}} .
$$

(a) If \boldsymbol{x} is an eigenvector of A, show that $R(\boldsymbol{x})$ is the corresponding eigenvalue.
(b) From now on, let \boldsymbol{x} be an arbitrary unit vector, and write

$$
\boldsymbol{x}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{v}_{i}
$$

where \boldsymbol{v}_{i} are the orthonormal eigenvectors of A with corresponding eigenvalues λ_{i}.
Show that

$$
\lambda_{\min } \leq R(\boldsymbol{x}) \leq \lambda_{\max },
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ denote the smallest and the largest eigenvalue of A, respectively.
(c) Show that

$$
\alpha_{j}=1-\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{j}\right\|^{2} .
$$

(d) Extra credit: Finally conclude that

$$
R(\boldsymbol{x})=\lambda_{k}+O\left(\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|^{2}\right) .
$$

$$
(5+5+5+10)
$$

4. (a) Let $Q=Q(t)$ be a time-dependent $n \times n$ matrix that satisfies the differential equation

$$
\begin{equation*}
Q^{\prime}=Q S, \quad Q(0)=I \tag{}
\end{equation*}
$$

where $S(t)$ is a skew-symmetric $n \times n$ matrix, i.e. $S^{T}=-S$.
Show that $Q(t)$ is orthogonal for every $t \geq 0$.
Hint: You have to check that $Q Q^{T}=I$. Differentiate this relation and use the differential equation $(*)$.
(b) Extra credit: Let A be a time dependent matrix that satisfies the so-called isospectral flow equation

$$
A^{\prime}=A S-S A, \quad A(0)=A_{0}
$$

where S is skew symmetric.
Show that the eigenvalues of A remain unchanged under the evolution.
Hint: Use part (a) to conclude that $A(t)=Q^{T}(t) A_{0} Q(t)$.
5. You solve the boundary value problem

$$
-y^{\prime \prime}(x)=g(x)
$$

on a non-uniform grid. I.e., the step size changes from one node to the next, and we define

$$
\begin{aligned}
& h_{k}^{+}=x_{k+1}-x_{k}, \\
& h_{k}^{-}=x_{k}-x_{k-1} .
\end{aligned}
$$

(a) Show that the local truncation error for the method

$$
\begin{equation*}
-2\left(\frac{y_{k-1}}{h_{k}^{-}\left(h_{k}^{-}+h_{k}^{+}\right)}-\frac{y_{k}}{h_{k}^{-} h_{k}^{+}}+\frac{y_{k+1}}{h_{k}^{+}\left(h_{k}^{-}+h_{k}^{+}\right)}\right)=g_{k} \tag{}
\end{equation*}
$$

is given by

$$
T_{k}=\frac{1}{3} y^{\prime \prime \prime}\left(x_{k}\right)\left(h_{k}^{-}-h_{k}^{+}\right)+O\left(h_{k}^{-}\right)^{2}+O\left(h_{k}^{+}\right)^{2} .
$$

(b) What is the (local) order of the method?
(c) Extra credit: Replace the right side of $\left(^{*}\right)$ by

$$
\alpha g_{k-1}+(1-\alpha) g_{k+1} .
$$

Determine α so that the local order of the method is at least 2 .

$$
(15+5+10)
$$

