Numerical Methods II

Problem Sets $1 / 2$

due in class, February 23, 2004

1. (From Gautschi, 1997, p. 324.)
(a) Show that any one-step method of order p, when applied to the linear model problem $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$, yields

$$
\boldsymbol{y}_{n+1}=\phi(h A) \boldsymbol{y}_{n},
$$

where

$$
\phi(z)=1+z+\frac{1}{2!} z^{2}+\cdots+\frac{1}{p!} z^{p}+O\left(z^{p+1}\right) .
$$

(b) Show, in particular, that the $O\left(z^{p+1}\right)$ terms vanish for a p-stage Runge-Kutta method of order $p=1, \ldots, 4$, and for the Taylor method of order $p \geq 1$.
2. (From Gautschi, 1997, p. 328.) For an analytic function f, show that the level curve $|f(z)|=1$ obeys the differential equation

$$
\frac{\mathrm{d} z}{\mathrm{~d} s}=\mathrm{i} \frac{f(z)\left|f^{\prime}(z)\right|}{f^{\prime}(z)},
$$

where s is the arclength parameter along the level curve.
Hint: Write $f(z)=r \mathrm{e}^{\mathrm{i} \theta}$ and take θ as the independent variable. In a second step, change the independent variable from θ to s.
3. Project: Use the results from the previous two exercises to plot the boundary of the region of absolute stability in the complex $z=\lambda h$ plane for the Taylor methods of order $p=1, \ldots, 5$.
Notes: You can use, for example, the integrator ode_rk4 from last semester. The origin $z=0$ is always on the boundary of the region of absolute stability. (Explain!)
4. Shift of the Taylor polynomial.
(a) Let $p(t)$ be a polynomial of degree m, and let \boldsymbol{v} be the vector of coefficients of its Taylor expansion about $t=0$, scaled such that

$$
p(t)=v_{0}+v_{1} \frac{t}{h}+\cdots+v_{m}\left(\frac{t}{h}\right)^{m} .
$$

Show that the scaled Taylor coefficients of p about the point $t=h$, i.e. the coefficients defined via

$$
p(t)=w_{0}+w_{1} \frac{t-h}{h}+\cdots+w_{m}\left(\frac{t-h}{h}\right)^{m}
$$

are given by $\boldsymbol{w}=S \boldsymbol{v}$, where the components of S are

$$
S_{i j}= \begin{cases}0 & \text { for } i>j \\ \binom{j}{i} & \text { for } i \leq j\end{cases}
$$

and $i, j=0, \ldots, m$.
(b) Show that the inverse shift has coefficients

$$
\left(S^{-1}\right)_{i j}= \begin{cases}0 & \text { for } i>j \\ (-1)^{j-i}\binom{j}{i} & \text { for } i \leq j .\end{cases}
$$

5. BDF method in Nordsieck's representation. Recall that BDF methods are implicit linear multistep methods obtained through approximating the left side of the equation $y^{\prime}=f(t, y)$ by a polynomial interpolant.
More precisely, for the m-step, order m BDF method in the scalar case, let p_{n} denote the interpolating polynomial at timestep t_{n}. Then

$$
\begin{gathered}
p_{n}\left(t_{n-j}\right)=y_{n-j} \text { for } j=0, \ldots, m, \\
p_{n}^{\prime}\left(t_{n}\right)=f_{n} \equiv f\left(t_{n}, y_{n}\right) .
\end{gathered}
$$

Thus, computing the numerical solution y_{n} at time $t=t_{n}$ requires knowledge of m previous values y_{n-m}, \ldots, y_{n-1}.
Nordsieck's idea is that instead of storing previous values, one may as well store the scaled Taylor coefficients of the interpolating polynomial, namely

$$
\boldsymbol{z}_{n}=\left(\begin{array}{c}
p_{n}\left(t_{n}\right) \\
p_{n}^{\prime}\left(t_{n}\right) h \\
\vdots \\
p_{n}^{(m)}\left(t_{n}\right) h^{m} / m!
\end{array}\right) .
$$

(a) Show that

$$
p_{n+1}(t)-p_{n}(t)=\left(y_{n+1}-p_{n}\left(t_{n+1}\right)\right) \phi\left(\frac{t-t_{n+1}}{h}\right),
$$

where

$$
\phi(z)=\prod_{j=1}^{m}\left(\frac{z}{j}+1\right) .
$$

(b) Show that the BDF method of order m is equivalent to

$$
\boldsymbol{z}_{n+1}=S \boldsymbol{z}_{n}+\boldsymbol{v}\left(h f_{n+1}-\boldsymbol{e}_{1}^{T} S \boldsymbol{z}_{n}\right),
$$

where S is the shift matrix from Question 4, \boldsymbol{v} is the vector of (unscaled) Taylor coefficients of the polynomial $\phi(z) / \phi^{\prime}(0)$, and $\boldsymbol{e}_{1}=(0,1,0, \ldots, 0)^{T}$.
(c) Describe how you would change the step size in Nordsieck's representation of the BDF method.
6. Project: Implement BDF4 with step size control for a system of linear equations in Nordsieck's representation as an Octave function. The solver should take arguments of the form

```
ode_bdf4_var ('f', [t0,t1], y0, tol, Nmax)
```

where f is the function $f(t, y)$ on the right hand side of the differential equation, to is the initial time, t 1 is the final time, y 0 the initial condition, tol the local error tolerance, and Nmax the maximum number of steps.
Estimate the local error by using a predictor-corrector pair, where the predictor is the extrapolated value $p_{n}\left(t_{n+1}\right)$, and the corrector is given by the result of the BDF step. Use Broyden's method to solve the system of nonlinear equations that arises at each time step.
7. Project: Use your variable time-step BDF method to solve the Van der Pol equation

$$
\begin{aligned}
& \dot{x}=y, \\
& \dot{y}=\mu\left(1-x^{2}\right) y-x,
\end{aligned}
$$

with initial data $x(0)=2$ and $y(0)=0$. Can you get up to $\mu=1000$ within a reasonable computation time?

