
Numerical Methods II

Problem Sets 1/2

due in class, February 23, 2004

1. (From Gautschi, 1997, p. 324.)

(a) Show that any one-step method of order p, when applied to the linear model
problem y′ = Ay, yields

yn+1 = φ(hA) yn ,

where
φ(z) = 1 + z + 1

2!
z2 + · · ·+ 1

p!
zp + O(zp+1) .

(b) Show, in particular, that the O(zp+1) terms vanish for a p-stage Runge–Kutta
method of order p = 1, . . . , 4, and for the Taylor method of order p ≥ 1.

2. (From Gautschi, 1997, p. 328.) For an analytic function f , show that the level curve
|f(z)| = 1 obeys the differential equation

dz

ds
= i

f(z) |f ′(z)|
f ′(z)

,

where s is the arclength parameter along the level curve.

Hint: Write f(z) = r eiθ and take θ as the independent variable. In a second step,
change the independent variable from θ to s.

3. Project: Use the results from the previous two exercises to plot the boundary of the
region of absolute stability in the complex z = λh plane for the Taylor methods of
order p = 1, . . . , 5.

Notes: You can use, for example, the integrator ode_rk4 from last semester. The
origin z = 0 is always on the boundary of the region of absolute stability. (Explain!)

4. Shift of the Taylor polynomial.

(a) Let p(t) be a polynomial of degree m, and let v be the vector of coefficients of its
Taylor expansion about t = 0, scaled such that

p(t) = v0 + v1
t

h
+ · · ·+ vm

( t

h

)m

.
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Show that the scaled Taylor coefficients of p about the point t = h, i.e. the
coefficients defined via

p(t) = w0 + w1
t− h

h
+ · · ·+ wm

(t− h

h

)m

,

are given by w = Sv, where the components of S are

Sij =

{
0 for i > j(

j
i

)
for i ≤ j

and i, j = 0, . . . ,m.

(b) Show that the inverse shift has coefficients

(S−1)ij =

{
0 for i > j

(−1)j−i
(

j
i

)
for i ≤ j .

5. BDF method in Nordsieck’s representation. Recall that BDF methods are implicit
linear multistep methods obtained through approximating the left side of the equation
y′ = f(t, y) by a polynomial interpolant.

More precisely, for the m-step, order m BDF method in the scalar case, let pn denote
the interpolating polynomial at timestep tn. Then

pn(tn−j) = yn−j for j = 0, . . . ,m ,

p′n(tn) = fn ≡ f(tn, yn) .

Thus, computing the numerical solution yn at time t = tn requires knowledge of m
previous values yn−m, . . . , yn−1.

Nordsieck’s idea is that instead of storing previous values, one may as well store the
scaled Taylor coefficients of the interpolating polynomial, namely

zn =


pn(tn)

p′n(tn) h
...

p
(m)
n (tn) hm/m!

 .

(a) Show that

pn+1(t)− pn(t) = (yn+1 − pn(tn+1)) φ
(t− tn+1

h

)
,

where

φ(z) =
m∏

j=1

(z

j
+ 1

)
.
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(b) Show that the BDF method of order m is equivalent to

zn+1 = Szn + v
(
h fn+1 − eT

1 Szn

)
,

where S is the shift matrix from Question 4, v is the vector of (unscaled) Taylor
coefficients of the polynomial φ(z)/φ′(0), and e1 = (0, 1, 0, . . . , 0)T .

(c) Describe how you would change the step size in Nordsieck’s representation of the
BDF method.

6. Project: Implement BDF4 with step size control for a system of linear equations in
Nordsieck’s representation as an Octave function. The solver should take arguments of
the form

ode_bdf4_var (’f’, [t0,t1], y0, tol, Nmax)

where f is the function f(t, y) on the right hand side of the differential equation, t0
is the initial time, t1 is the final time, y0 the initial condition, tol the local error
tolerance, and Nmax the maximum number of steps.

Estimate the local error by using a predictor-corrector pair, where the predictor is the
extrapolated value pn(tn+1), and the corrector is given by the result of the BDF step.
Use Broyden’s method to solve the system of nonlinear equations that arises at each
time step.

7. Project: Use your variable time-step BDF method to solve the Van der Pol equation

ẋ = y ,

ẏ = µ (1− x2) y − x ,

with initial data x(0) = 2 and y(0) = 0. Can you get up to µ = 1000 within a
reasonable computation time?
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