Numerical Methods II

Problem Set 4

due in class, March 10, 2004
(From SM, Chapter 5)

1. Show that if H_{k} is a $k \times k$ Householder matrix, i.e.

$$
H_{k}=I-2 \frac{\boldsymbol{v}_{k} \boldsymbol{v}_{k}^{T}}{\boldsymbol{v}_{k}^{T} \boldsymbol{v}_{k}}
$$

then

$$
H=\left(\begin{array}{cc}
I_{n-k} & 0 \\
0 & H_{k}
\end{array}\right)
$$

is an $n \times n$ Householder matrix.
2. Use Householder matrices to transform the matrix

$$
A=\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
1 & -7 & 6 & 5 \\
2 & 6 & 2 & -5 \\
2 & 5 & -5 & 1
\end{array}\right)
$$

into tridiagonal form.
3. Let $A^{(0)}$ be a diagonal $n \times n$ matrix with distinct diagonal elements, and $A^{(1)}$ be a symmetric $n \times n$ matrix. Assume that

$$
A_{\varepsilon} \equiv A^{(0)}+\varepsilon A^{(1)}
$$

has an eigenvalue λ_{ε} with corresponding eigenvector $\boldsymbol{x}_{\varepsilon}$. Show that

$$
\begin{aligned}
& \lambda_{\varepsilon}=\lambda^{(0)}+\varepsilon \lambda^{(1)}+O\left(\varepsilon^{2}\right), \\
& \boldsymbol{x}_{\varepsilon}=\boldsymbol{x}^{(0)}+\varepsilon \boldsymbol{x}^{(1)}+O\left(\varepsilon^{2}\right),
\end{aligned}
$$

where $\lambda^{(0)}=a_{j j}^{(0)}$ for some $j=1, \ldots, n, \lambda^{(1)}=a_{j j}^{(1)}, \boldsymbol{x}^{(0)}=\boldsymbol{e}_{j}$, and

$$
x_{i}^{(1)}=\frac{a_{i j}^{(1)}}{a_{j j}^{(0)}-a_{i i}^{(0)}}
$$

for $i \neq j$. Explain why normalizability of the eigenvector requires that we choose $x_{j}^{(1)}=0$.
4. ($Q R$ iteration.) Let A be a symmetric, tridiagonal $n \times n$ matrix, and assume that $A-\mu I=Q R$ where Q is a product of plane rotations and R is upper triangular and also tridiagonal. Show that
(a) $B=R Q+\mu I$ is symmetric;
(b) B has the same eigenvalues as A;
(c) B is tridiagonal.

