Numerical Methods II

Problem Set 4

due in class, March 10, 2004

(From SM, Chapter 5)

1. Show that if H_k is a $k \times k$ Householder matrix, i.e.

$$H_k = I - 2 \frac{\boldsymbol{v}_k \boldsymbol{v}_k^T}{\boldsymbol{v}_k^T \boldsymbol{v}_k},$$

then

$$H = \begin{pmatrix} I_{n-k} & 0\\ 0 & H_k \end{pmatrix}$$

is an $n \times n$ Householder matrix.

2. Use Householder matrices to transform the matrix

$$A = \begin{pmatrix} 2 & 1 & 2 & 2\\ 1 & -7 & 6 & 5\\ 2 & 6 & 2 & -5\\ 2 & 5 & -5 & 1 \end{pmatrix}$$

into tridiagonal form.

3. Let $A^{(0)}$ be a diagonal $n \times n$ matrix with distinct diagonal elements, and $A^{(1)}$ be a symmetric $n \times n$ matrix. Assume that

$$A_{\varepsilon} \equiv A^{(0)} + \varepsilon \, A^{(1)}$$

has an eigenvalue λ_{ε} with corresponding eigenvector $\boldsymbol{x}_{\varepsilon}$. Show that

$$\begin{split} \lambda_{\varepsilon} &= \lambda^{(0)} + \varepsilon \, \lambda^{(1)} + O(\varepsilon^2) \,, \\ \boldsymbol{x}_{\varepsilon} &= \boldsymbol{x}^{(0)} + \varepsilon \, \boldsymbol{x}^{(1)} + O(\varepsilon^2) \,, \end{split}$$

where $\lambda^{(0)} = a_{jj}^{(0)}$ for some j = 1, ..., n, $\lambda^{(1)} = a_{jj}^{(1)}$, $\boldsymbol{x}^{(0)} = \boldsymbol{e}_j$, and $x_i^{(1)} = \frac{a_{ij}^{(1)}}{a_{jj}^{(0)} - a_{ij}^{(0)}}$

for $i \neq j$. Explain why normalizability of the eigenvector requires that we choose $x_j^{(1)} = 0$.

- 4. (*QR iteration.*) Let A be a symmetric, tridiagonal $n \times n$ matrix, and assume that $A \mu I = QR$ where Q is a product of plane rotations and R is upper triangular and also tridiagonal. Show that
 - (a) $B = RQ + \mu I$ is symmetric;
 - (b) B has the same eigenvalues as A;
 - (c) B is tridiagonal.