Numerical Methods II

Problem Set 7

due in class, May 5, 2004

The following set of questions concerns the quadratic penalty method for solving the equalityconstrained minimization problem

$$
\begin{gather*}
\text { minimize } f(\boldsymbol{x}) \tag{1a}\\
\text { subject to } \boldsymbol{h}(\boldsymbol{x})=0 \tag{1b}
\end{gather*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$. We assume throughout that f and h are at least twice continuously differentiable.

Recall that \boldsymbol{x} is called a regular point if $\boldsymbol{h}(\boldsymbol{x})=0$ and the $q \times n$ matrix $\boldsymbol{\nabla} \boldsymbol{h}(\boldsymbol{x})$ has full rank.
Necessary Condition Suppose $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ solves problem (1). Then
(i) there exists a vector of Lagrange multipliers $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{q}$ such that

$$
\begin{equation*}
\boldsymbol{\nabla} f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{\nabla} \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{\lambda}^{*}=0 . \tag{2}
\end{equation*}
$$

If \boldsymbol{x}^{*} is a regular point, then the vector of Lagrange multipliers is unique.
Sufficient Condition Suppose $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ satisfies the constraint $\boldsymbol{h}\left(\boldsymbol{x}^{*}\right)=0$, condition (i), and
(ii) the Hessian matrix $H=\operatorname{Hess}\left(f+\boldsymbol{h}^{T} \boldsymbol{\lambda}^{*}\right)\left(\boldsymbol{x}^{*}\right)$ is positive definite on the tangent plane to the constraint manifold. In other words,

$$
\begin{equation*}
\boldsymbol{x}^{T} H \boldsymbol{x}>0 \quad \text { for all } \boldsymbol{x} \neq 0 \text { with } \boldsymbol{\nabla} \boldsymbol{h} \boldsymbol{x}=0 . \tag{3}
\end{equation*}
$$

Then \boldsymbol{x}^{*} is a strict local minimizer of problem (1).
Penalty Method The penalty method for solving (1) is the following. Solve the unconstrained minimization problem

$$
\begin{equation*}
p_{\alpha}(\boldsymbol{x})=f(\boldsymbol{x})+\frac{\alpha}{2}\|\boldsymbol{h}(\boldsymbol{x})\|^{2} \tag{4}
\end{equation*}
$$

for a fixed value of α. If the constraint is not satisfied to sufficient accuracy, increase α and repeat.

1. Monotonicity of the penalty method. Let $0<\alpha<\beta$, and let \boldsymbol{x}^{*} and \boldsymbol{y}^{*} denote the minimizers of p_{α} and p_{β}, respectively. Prove the following statements.
(a) $p_{\alpha}\left(\boldsymbol{x}^{*}\right) \leq p_{\beta}\left(\boldsymbol{y}^{*}\right)$
(b) $\left\|\boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right\| \geq\left\|\boldsymbol{h}\left(\boldsymbol{y}^{*}\right)\right\|$

Hint: Show that $p_{\alpha}\left(\boldsymbol{x}^{*}\right) \leq p_{\alpha}\left(\boldsymbol{y}^{*}\right)$ and $p_{\beta}\left(\boldsymbol{y}^{*}\right) \leq p_{\beta}\left(\boldsymbol{x}^{*}\right)$. Add both inequalities and off you go.
(c) $f\left(\boldsymbol{x}^{*}\right) \leq f\left(\boldsymbol{y}^{*}\right)$.
2. Ill-conditioning of the penalty method. Show that the minimization problem for p_{α} gets increasingly ill-conditioned as α becomes large.

Hint: You have to show that $\operatorname{Hess} p_{\alpha}\left(\boldsymbol{x}^{*}\right)$ has eigenvalues of very different magnitude. This is the case if you can find two unit vectors \boldsymbol{u} and \boldsymbol{v} so that \boldsymbol{u}^{T} Hess $p_{\alpha}\left(\boldsymbol{x}^{*}\right) \boldsymbol{u}$ and \boldsymbol{v}^{T} Hess $p_{\alpha}\left(\boldsymbol{x}^{*}\right) \boldsymbol{v}$ have very different magnitude.
3. Continuous dependence of the solution of the penalty parameter. Let $\mu=1 / \alpha$ and write out the necessary condition for a minimizer of p_{α} as

$$
F(\boldsymbol{x}, \boldsymbol{\lambda})=\binom{\boldsymbol{\nabla}^{T} f+\boldsymbol{\nabla}^{T} \boldsymbol{h}^{T} \boldsymbol{\lambda}}{\boldsymbol{h}-\mu \boldsymbol{\lambda}}=0 .
$$

Show that, provided that the solution $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ satisfies the sufficient condition (ii), and provided that \boldsymbol{x}^{*} is a regular point, that \boldsymbol{x}^{*} and $\boldsymbol{\lambda}^{*}$ vary continuously with μ near $\mu^{*}=0$ by verifying that $\boldsymbol{\nabla}_{(\boldsymbol{x}, \boldsymbol{\lambda})} F\left(\boldsymbol{x}^{*}, \lambda^{*} ; \mu^{*}\right)$ is nonsingular. (I.e., the chief condition of the implicit function theorem is satisfied.)

