Numerical Methods II

Problem Set 7

due in class, May 5, 2004

The following set of questions concerns the quadratic penalty method for solving the equalityconstrained minimization problem

minimize
$$f(\boldsymbol{x})$$
 (1a)

subject to
$$\boldsymbol{h}(\boldsymbol{x}) = 0$$
 (1b)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^q$. We assume throughout that f and h are at least twice continuously differentiable.

Recall that \boldsymbol{x} is called a *regular point* if $\boldsymbol{h}(\boldsymbol{x}) = 0$ and the $q \times n$ matrix $\nabla \boldsymbol{h}(\boldsymbol{x})$ has full rank.

Necessary Condition Suppose $\boldsymbol{x}^* \in \mathbb{R}^n$ solves problem (1). Then

(i) there exists a vector of Lagrange multipliers $\boldsymbol{\lambda}^* \in \mathbb{R}^q$ such that

$$\nabla f(\boldsymbol{x}^*) + \nabla \boldsymbol{h}(\boldsymbol{x}^*)^T \boldsymbol{\lambda}^* = 0.$$
⁽²⁾

If x^* is a regular point, then the vector of Lagrange multipliers is unique.

Sufficient Condition Suppose $x^* \in \mathbb{R}^n$ satisfies the constraint $h(x^*) = 0$, condition (i), and

(ii) the Hessian matrix $H = \text{Hess}(f + h^T \lambda^*)(x^*)$ is positive definite on the tangent plane to the constraint manifold. In other words,

$$\boldsymbol{x}^{T}H\boldsymbol{x} > 0$$
 for all $\boldsymbol{x} \neq 0$ with $\boldsymbol{\nabla}\boldsymbol{h}\,\boldsymbol{x} = 0$. (3)

Then \boldsymbol{x}^* is a strict local minimizer of problem (1).

Penalty Method The penalty method for solving (1) is the following. Solve the unconstrained minimization problem

$$p_{\alpha}(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{\alpha}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2$$
(4)

for a fixed value of α . If the constraint is not satisfied to sufficient accuracy, increase α and repeat.

- 1. Monotonicity of the penalty method. Let $0 < \alpha < \beta$, and let \boldsymbol{x}^* and \boldsymbol{y}^* denote the minimizers of p_{α} and p_{β} , respectively. Prove the following statements.
 - (a) $p_{\alpha}(\boldsymbol{x}^*) \leq p_{\beta}(\boldsymbol{y}^*)$

- (b) $\|\boldsymbol{h}(\boldsymbol{x}^*)\| \ge \|\boldsymbol{h}(\boldsymbol{y}^*)\|$ *Hint:* Show that $p_{\alpha}(\boldsymbol{x}^*) \le p_{\alpha}(\boldsymbol{y}^*)$ and $p_{\beta}(\boldsymbol{y}^*) \le p_{\beta}(\boldsymbol{x}^*)$. Add both inequalities and off you go.
- (c) $f(x^*) \le f(y^*)$.
- 2. Ill-conditioning of the penalty method. Show that the minimization problem for p_{α} gets increasingly ill-conditioned as α becomes large.

Hint: You have to show that Hess $p_{\alpha}(\boldsymbol{x}^*)$ has eigenvalues of very different magnitude. This is the case if you can find two unit vectors \boldsymbol{u} and \boldsymbol{v} so that \boldsymbol{u}^T Hess $p_{\alpha}(\boldsymbol{x}^*)\boldsymbol{u}$ and \boldsymbol{v}^T Hess $p_{\alpha}(\boldsymbol{x}^*)\boldsymbol{v}$ have very different magnitude.

3. Continuous dependence of the solution of the penalty parameter. Let $\mu = 1/\alpha$ and write out the necessary condition for a minimizer of p_{α} as

$$F(\boldsymbol{x},\boldsymbol{\lambda}) = \begin{pmatrix} \boldsymbol{\nabla}^T f + \boldsymbol{\nabla}^T \boldsymbol{h}^T \boldsymbol{\lambda} \\ \boldsymbol{h} - \mu \boldsymbol{\lambda} \end{pmatrix} = 0.$$

Show that, provided that the solution $(\boldsymbol{x}^*, \boldsymbol{\lambda}^*)$ satisfies the sufficient condition (ii), and provided that \boldsymbol{x}^* is a regular point, that \boldsymbol{x}^* and $\boldsymbol{\lambda}^*$ vary continuously with μ near $\mu^* = 0$ by verifying that $\nabla_{(\boldsymbol{x},\boldsymbol{\lambda})}F(\boldsymbol{x}^*, \boldsymbol{\lambda}^*; \mu^*)$ is nonsingular. (I.e., the chief condition of the implicit function theorem is satisfied.)