Solution to Ivanov, Chapter 3, Problem 9

Let $S \boldsymbol{v}$ denote the rotation by 90 degrees anticlockwise of the vector \boldsymbol{v}. Further, define

$$
\begin{equation*}
S_{i} \boldsymbol{v}=\sum_{j=1}^{i} S^{j-1} \boldsymbol{v} \tag{1}
\end{equation*}
$$

where $S_{0} \boldsymbol{v}=\mathbf{0}$. Then for any vector \boldsymbol{v}, the set $\left\{S_{0} \boldsymbol{v}, S_{1} \boldsymbol{v}, S_{2} \boldsymbol{v}, S_{3} \boldsymbol{v}\right\}$ are the four vertices of a square. Vice versa, any square can be represented of a translation of this set for some vector \boldsymbol{v}; see the figure below.

It is easy to check that $S_{i}(\boldsymbol{v}+\boldsymbol{w})=S_{i} \boldsymbol{v}+S_{i} \boldsymbol{w}$ for any two vectors \boldsymbol{v} and \boldsymbol{w}. (In fact, S_{i} is a linear map and can be though of as a matrix.)

The solution to Problem 9 is now an easy application of vector algebra. Let the vertices of the first square have coordinates

$$
\begin{equation*}
\boldsymbol{p}_{i}=\boldsymbol{a}+S_{i} \boldsymbol{v} \quad \text { for } i=0, \ldots, 3, \tag{2}
\end{equation*}
$$

and the vertices of the second square have coordinates

$$
\begin{equation*}
\boldsymbol{q}_{i}=\boldsymbol{b}+S_{i} \boldsymbol{w} \quad \text { for } i=0, \ldots, 3 . \tag{3}
\end{equation*}
$$

Then the midpoint of the line from the i th vertex of the first square to the i th vertex of the second square (the above formulas make no assumption on where we start counting, but once a first vertex is specified, follow anti-clockwise orientation) has coordinates

$$
\begin{equation*}
\frac{\boldsymbol{p}_{i}+\boldsymbol{q}_{i}}{2}=\frac{\boldsymbol{a}+S_{i} \boldsymbol{v}+\boldsymbol{b}+S_{i} \boldsymbol{w}}{2}=\frac{\boldsymbol{a}+\boldsymbol{b}}{2}+S_{i}\left(\frac{\boldsymbol{v}+\boldsymbol{w}}{2}\right) . \tag{4}
\end{equation*}
$$

This is again the representation for the vertices of a square.

