General Mathematics and Computational Science II

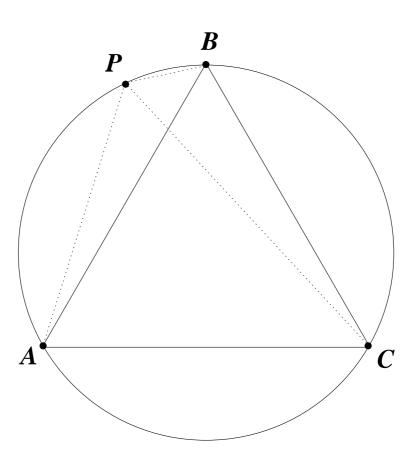
Midterm Exam

March 6, 2007

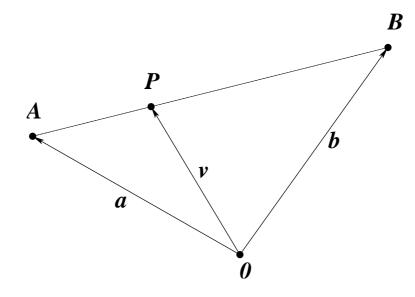
1. A point P lies on the arc AB of the circle circumscribing an equilateral triangle ABC; see figure. Prove that PC = PA + PB.

Hint: By the *arc central angle theorem*, the angles $\angle APC$ and $\angle ABC$ are equal.

(10)



2. A point P lies on the line segment AB such that AP = 2 PB; see figure. The coordinates of the points are given by a, v, and b, respectively.
Find an expression for v in terms of a and b. (5)



- 3. Describe the symmetry group of the square. How many elements does it have? Give an example of a minimal generating set. (10)
- 4. (a) Are the even integers $\{2k \colon k \in \mathbb{Z}\}$ a subgroup of $(\mathbb{Z}, +)$? The odd integers $\{2k+1 \colon k \in \mathbb{Z}\}$?
 - (b) Show that the identity element e of a group (G, \circ) is the unique element which satisfies $e \circ a = a \circ e = a$ for all $a \in G$.

(5+5)

5. Consider an ensemble of Kac rings with N sites. Initially, each member of the ensemble has the same configuration of black and white balls, while the distribution of markers among the edges of the rings is random; each edge carries a marker with probability μ . Recall from class that the difference between the number of black balls and the number of white balls, averaged over the ensemble, is given by

$$\langle \Delta(t) \rangle = (1 - 2\,\mu)^t \,\Delta(0)$$

for $0 \leq t \leq N$.

- (a) Show that $\operatorname{Var}[\Delta(N)] = (1 (1 2\mu)^{2N}) \Delta^2(0).$
- (b) Is $\langle \Delta(N) \rangle$ a good description of $\Delta(N)$ for a "typical" member of the ensemble? Briefly explain your answer.

(7+3)

6. Set up a Kac ring in its initial state S_0 with a random distribution of markers and balls and assume that Δ , the difference between the number of black and the number of white balls, is positive.

First, turn the ring by one clockwise step into some state S_1 . We demonstrated in class that Δ is more likely to decrease than to increase during this first step.

Now turn the ring one step anti-clockwise. Since the dynamics is time-reversible, we are reverting back to S_0 , hence Δ is more likely to increase than to decrease in this backward step.

Now turn the ring another step anti-clockwise into a state S_{-1} . Is Δ now more likely to increase or to decrease? Explain! (5)