Partial Differential Equations

Homework 5

due March 14, 2007

1. Finish the proof of the mean value formula for the heat equation by showing that

$$
\iint_{E(0,0 ; 1)} \frac{|y|^{2}}{s^{2}} d y d s=4
$$

where

$$
E(x, t ; r)=\left\{(y, s): \Phi(x-y, t-s) \geq r^{-n}\right\}
$$

denotes the heat ball "centered" at (x, t).
Hint: Use polar coordinates in space, and an appropriate change of variables in time. The remaining one-dimensional integral is Mathematica-integrable. You can also use that

$$
\begin{gathered}
\int_{0}^{\infty} t^{\lambda+1} e^{-\lambda t} d t=\frac{\Gamma(\lambda+2)}{\lambda^{2+\lambda}}, \\
\Gamma(x+1)=x \Gamma(x) \\
\alpha(n)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} .
\end{gathered}
$$

2. Evans, p. 87 problem 12
3. Evans, p. 87 problem 13
