Partial Differential Equations

Homework 9

due May 7, 2007

In the following, \mathbb{T} denotes the 1-torus, i.e. $\mathbb{T} = \mathbb{R} \mod 2\pi$.

- 1. Let $U \subset \mathbb{R}^n$ be open and let u_n and v_n be two sequences in $L^2(U)$.
 - (a) Suppose $u_n \to u$ strongly and $v_n \to v$ weakly, and that, moreover, $u_n v_n \in L^2(U)$ for every $n \in \mathbb{N}$ and also $uv \in L^2(U)$. Show that $u_n v_n \to uv$ weakly.
 - (b) Give an example that when $u_n \rightharpoonup u$ only weakly in (a), then $u_n v_n$ may not converge to uv weakly.
- 2. (a) Show that, for every $u \in H^2(\mathbb{T})$,

$$\|u\|_{H^1}^2 \le \|u\|_{L^2} \|u\|_{H^2}.$$

(b) Consider the Fisher–Kolmogorov equation on \mathbb{T} ,

$$u_t = u_{xx} + (1 - u) u^m,$$

 $u(0) = u^{\text{in}},$

where m is an even positive integer. Use the result from (a), as well as Question 4 of the previous homework set, to prove that that

$$\limsup_{t \to \infty} \left\| u(t) \right\|_{H^1} \le C$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data u^{in} . You may assume that u is sufficiently differentiable so that all your formal manipulations are justified.

3. Prove the following version of the *Poincaré inequality*: For every $u \in H^1(\mathbb{T})$ which has zero mean, i.e. where

$$\int_{\mathbb{T}} u \, dx = 0 \, ,$$

we have

$$\int_{\mathbb{T}} |u|^2 \, dx \le C \, \int_{\mathbb{T}} |u_x|^2 \, dx \, .$$

Find the best estimate for C.

4. Consider the inviscid Burger's equation on \mathbb{T} , i.e.

$$u_t + u \, u_x = 0 \, .$$

(a) Define an approximate solution u_n by applying the projector \mathbb{P}_n which projects onto modes up to wave number n to Burger's equation. Show that

$$||u_n(t)||_{L^2} = ||u_n(0)||_{L^2}.$$

(b) Conclude that $\{u_n\}$ has a subsequence that converges to some u weakly in $L^2(\mathbb{T})$, and that

$$||u(t)||_{L^2} \le ||u(0)||_{L^2}.$$

Why do you have an inequality rather than equality?

(Note: you are not required to show that u solves Burger's equation in any sense. This would require a much more involved analysis.)