General Mathematics and Computational Science I

Exercise 3

September 11, 2007

1. (Repeat from Exercise Sheet 2.)

Let X be a nonempty set with an *equivalence relation* \sim on it. Recall that this means that

- (i) $x \sim x$ for every $x \in X$ ("reflexivity"),
- (ii) $x \sim y$ implies that $y \sim x$ for $x, y \in X$ ("symmetry")
- (iii) $x \sim y$ and $y \sim z$ implies $x \sim z$ for $x, y, z \in X$ ("transitivity").

Also recall that for any $x \in X$, we define the *equivalence class* represented by x as

$$[x] = \{ y \in X \colon y \sim x \} \,.$$

Prove that for all $x, y \in X$,

$$[x] = [y]$$
 if and only if $x \sim y$.

- 2. Check whether each of the following relations is an equivalence relation, i.e. check whether it is reflexive, symmetric, and transitive. If a property holds, prove that it does. If a property does not hold, give a counter example.
 - (a) On \mathbb{Z} , define $x \sim y$ if and only if x y is divisible by 3. Note: Any number $n \in \mathbb{Z}$ is divisible by 3 if there exists $k \in \mathbb{Z}$ such that $n = 3 \cdot k$.
 - (b) Let X be a nonempty set. Define, for any two subsets $A, B \subseteq X$, that $A \sim B$ if and only if $A \subseteq B$.
 - (c) On $\mathbb{Z} \times \mathbb{Z}$, define $(a, b) \sim (a', b')$ if and only if ab' = ba'.
- 3. Recall from class that we studied a binary operation $F \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (A1) F(a, 1) = s(a) for all $a \in \mathbb{N}$,
 - (A2) F(a, s(b)) = s(F(a, b)) for all $a, b \in \mathbb{N}$,

where $s\colon \mathbb{N} \to \mathbb{N}$ is as in Peano's axioms.

Prove that if

$$F(a,c) = F(b,c)$$

for some $a, b, c \in \mathbb{N}$, then a = b.