General Mathematics and Computational Science I

Exercise 3

September 11, 2007

1. (Repeat from Exercise Sheet 2.)

Let X be a nonempty set with an equivalence relation \sim on it.
Recall that this means that
(i) $x \sim x$ for every $x \in X$ ("reflexivity"),
(ii) $x \sim y$ implies that $y \sim x$ for $x, y \in X$ ("symmetry")
(iii) $x \sim y$ and $y \sim z$ implies $x \sim z$ for $x, y, z \in X$ ("transitivity").

Also recall that for any $x \in X$, we define the equivalence class represented by x as

$$
[x]=\{y \in X: y \sim x\}
$$

Prove that for all $x, y \in X$,

$$
[x]=[y] \quad \text { if and only if } \quad x \sim y
$$

2. Check whether each of the following relations is an equivalence relation, i.e. check whether it is reflexive, symmetric, and transitive. If a property holds, prove that it does. If a property does not hold, give a counter example.
(a) On \mathbb{Z}, define $x \sim y$ if and only if $x-y$ is divisible by 3 .

Note: Any number $n \in \mathbb{Z}$ is divisible by 3 if there exists $k \in \mathbb{Z}$ such that $n=3 \cdot k$.
(b) Let X be a nonempty set. Define, for any two subsets $A, B \subseteq X$, that $A \sim B$ if and only if $A \subseteq B$.
(c) On $\mathbb{Z} \times \mathbb{Z}$, define $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ if and only if $a b^{\prime}=b a^{\prime}$.
3. Recall from class that we studied a binary operation $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(A1) $F(a, 1)=s(a)$ for all $a \in \mathbb{N}$,
(A2) $F(a, s(b))=s(F(a, b))$ for all $a, b \in \mathbb{N}$,
where $s: \mathbb{N} \rightarrow \mathbb{N}$ is as in Peano's axioms.
Prove that if

$$
F(a, c)=F(b, c)
$$

for some $a, b, c \in \mathbb{N}$, then $a=b$.

