General Mathematics and Computational Science I

Exercise 6

September 20, 2007

1. (Bernoulli inequality.) Use induction to prove that for every $x \in \mathbb{Q}$ with $x \geq -1$ and every $n \in \mathbb{N}$,

$$(1+x)^n \ge 1 + nx.$$

2. Recall from class that two sets A and B are said to be *isomorphic*, written $A \cong B$, if there exists a bijective map $\phi \colon A \to B$.

Show that the relation "\sigma" is in fact an equivalence relation.

- 3. We say a field \mathbb{F} is *ordered* if there exists a relation > which respects addition and multiplication in the following way. For any $x, y, z \in \mathbb{F}$,
 - (O1) if x > y, then x + z > y + z;
 - (O2) if x > y and z > 0, then xz > yz.

Recall from class that the set of rational numbers \mathbb{Q} are equivalence classes [a/b] with respect to the equivalence relation $(a,b) \sim (a',b')$ if $a \cdot b' = a' \cdot b$. Recall that addition, multiplication, and ordering of two rationals $x = [a/b] \in \mathbb{Q}$ and $y = [c/d] \in \mathbb{Q}$ are defined as follows.

- (a) x + y = [(ad + bc)/bd]
- (b) $x \cdot y = [ac/bd]$
- (c) x is positive if ab > 0 and negative if ab < 0; x > y if x y is positive.

Show that this order relation satisfies (O1) and (O2).