# General Mathematics and Computational Science I 

Exercise 6

September 20, 2007

1. (Bernoulli inequality.) Use induction to prove that for every $x \in \mathbb{Q}$ with $x \geq-1$ and every $n \in \mathbb{N}$,

$$
(1+x)^{n} \geq 1+n x
$$

2. Recall from class that two sets $A$ and $B$ are said to be isomorphic, written $A \cong B$, if there exists a bijective map $\phi: A \rightarrow B$.
Show that the relation " $\cong$ " is in fact an equivalence relation.
3. We say a field $\mathbb{F}$ is ordered if there exists a relation $>$ which respects addition and multiplication in the following way. For any $x, y, z \in \mathbb{F}$,
(O1) if $x>y$, then $x+z>y+z$;
(O2) if $x>y$ and $z>0$, then $x z>y z$.
Recall from class that the set of rational numbers $\mathbb{Q}$ are equivalence classes $[a / b]$ with respect to the equivalence relation $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ if $a \cdot b^{\prime}=a^{\prime} \cdot b$. Recall that addition, multiplication, and ordering of two rationals $x=[a / b] \in \mathbb{Q}$ and $y=[c / d] \in \mathbb{Q}$ are defined as follows.
(a) $x+y=[(a d+b c) / b d]$
(b) $x \cdot y=[a c / b d]$
(c) $x$ is positive if $a b>0$ and negative if $a b<0 ; x>y$ if $x-y$ is positive.

Show that this order relation satisfies (O1) and (O2).

