General Mathematics and Computational Science I

Exercise 16

November 6, 2007

1. Check the conditions for Laplace's method for the function

$$
f(x)=x-\ln x-1
$$

which appears in the proof of Stirling's formula. I.e., check the following.
(a) f is strictly decreasing for $0<x<1$, strictly increasing for $x>1$, and $f(1)=0$.
(b) There are positive constants b and c such that $f(x) \geq b x$ for $x \geq c$.
(c) $f(x)=a(x-1)^{2}+\psi(x)(x-1)^{3}$ where ψ is a bounded function for $x \in[1-\delta, 1+\delta]$ for some $\delta>0$. How must a be chosen?

Hint: For (c), use either Taylor's formula with remainder (easy), or l'Hôpital's rule for the function

$$
g(x)=\frac{f(x)}{(x-1)^{2}}
$$

(more elementary, but longer).
2. Use Stirling's formula to prove that

$$
\frac{n!}{(n / 2)!^{2}} \sim 2^{n} \sqrt{\frac{2}{\pi n}}
$$

