
WEAK SOLUTIONS TO THE FISHER–KOLMOGOROV
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MARCEL OLIVER

1. A crash course in Functional Analysis

1.1. Spaces. Let U ⊂ Rn be open, and 1 ≤ p ≤ ∞. The space Lp(U) is the set of
(equivalence classes of) Lebesgue-measurable functions for which the norm

‖u‖
Lp =


(∫

U

|u|p dx
) 1
p

for 1 ≤ p <∞

ess supx∈U |u(x)| for p =∞
(1)

is finite. (Two functions are identified if they differ only on a set of measure zero.)
It can be shown that Lp is a Banach space, i.e. it is complete. Moreover, L2 is a
Hilbert space with inner product

〈u, v〉 =
∫
U

u(x) v(x) dx . (2)

(We consider only real-valued functions here; in the complex-valued case, we have
to conjugate one of the factors of the integrand.)

For r integer, the Sobolev space Hr(U) is the space of functions whose partial
derivatives up to order r are L2. When U = Tn, it is easy to define Hr for any real
r by finiteness of the norm

‖u‖2
Hr =

∑
k∈Zn

(1 + |k|2)r |ûk|2 , (3)

where ûk denote the Fourier coefficients of u. For U = Rn, a similar construction
using the Fourier transform is possible.

If u = u(x, t), we can also think of u as a Banach space valued map t 7→ u(·, t).
Then u ∈ Lp([0, T ];X) if

‖u‖p
Lp([0,T ];X)

≡
∫ T

0

‖u(t)‖pX dt <∞ ; (4)

similarly, u ∈ C([0, T ];X) if the map u : [0, T ]→ X, t 7→ u(·, t) is continuous.

1.2. Inequalities. Two basic inequalitites for working with Lp spaces are as simple
as they are useful.

Theorem 1 (Young’s inequality). For any two real numbers a, b > 0 and for
1 < p, p′ <∞ with

1
p

+
1
p′

= 1 (5)
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(sometimes called the conjugate exponents),

a b ≤ 1
p
ap +

1
p′
bp
′
. (6)

Proof. Since the exponential function is convex,

a b = eln a+ln b = e
1
p ln ap+

1
p′ ln bp′

≤ 1
p

eln ap

+
1
p′

eln bp′

. (7)

�

Theorem 2 (Hölder). For u ∈ Lp(U) and v ∈ Lp
′
(U) with p and p′ conjugate in

the sense of (5),
|〈u, v〉| ≤ ‖u‖

Lp ‖v‖
Lp′ . (8)

Proof. Since the Hölder inequality is scale invariant, it is sufficient to prove it for
functions of norm one in their respective spaces. Thus, taking the absolute value
inside the left hand integral and applying the Young inequality, we find that∫

U

|u(x) v(x)|dx ≤ 1
p

∫
U

|u|p dx+
1
p′

∫
U

|v|p
′
dx =

1
p

+
1
p′

= 1 . (9)

�

1.3. Projectors. When U = Tn, any function u ∈ L2 has the Fourier representa-
tion

u(x) =
∑
k∈Zn

ûk eik·x , (10)

where the functions exp(ikx) are an L2-orthogonal basis. We denote the projection
onto the subspace spanned by the finitely many “Fourier modes” up to wave number
m by

Pmu(x) =
∑
|k|≤m

ûk eik·x . (11)

We abbreviate this subspace by PmL2. It is easy to check that Pm is selfadjoint,
i.e.

〈u,Pmv〉 = 〈Pmu,Pmv〉 = 〈Pmu, v〉 (12)

for all u, v ∈ L2.

1.4. Weak topology. If X is a Banach space, its dual X ′ is the set of continuous
linear functionals on X, i.e.

X ′ = {f ∈ C(X; R) : f is linear} . (13)

If X is a Hilbert space with inner product 〈·, ·〉, the Riesz representation theorem
states that f ∈ X ′ if and only if there exists a v ∈ X such that f(u) = 〈u, v〉 for
every u ∈ X. In other words, there is a canonical isomorphism between X and its
dual, and we will henceforth interchange the notion of function and functional with
impunity.

Similarly, it can be shown that the dual of Lp is Lq for 1/p + 1/q = 1 with
1 ≤ p <∞, where a function φ ∈ Lq is identified with the functional 〈·, φ〉 ∈ (Lp)′

via (an extension of) the L2 inner product.
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If X is a Banach space, a sequence un ∈ X is said to converge weakly to u ∈ X
if

〈un, v〉 → 〈u, v〉 (14)

for every v ∈ X ′; we write un ⇀ u. This defines a topology on X which is weaker
than the norm topology (or strong topology) on X unless X is finite dimensional,
in which case weak and strong topology coincide. In other words, if X is infinite
dimensional, there are sequences that converge weakly, but not strongly.

The following theorem is a central ingredient for our construction. We formulate
it for the special case of a reflexive Banach space, i.e. a space where X = X ′′.
This is, for example, the case for Lp with 1 < p < ∞. Both parts of the theorem
are consequences of fundamental, nontrivial theorems of functional analysis: the
uniform boundedness principle and Alaoglu’s theorem.

Theorem 3. Let X be a reflexive Banach space and un a sequence in X. Then
(1) if un is weakly convergent, then it is bounded in the norm of X;
(2) vice versa, if un is bounded, then the set {un} is relatively compact in the

weak topology, i.e. there exists a weakly convergent subsequence of un.

We can also endow the spaces for functions of space and time with various weak
topologies. Given a Banach space X with dual X ′, we say that un : [0, T ] → X
converges to u in C([0, T ]; w-X), where w-X denotes X endowed with its weak
topology, when for every v ∈ X ′,

〈un(t), v〉 → 〈u(t), v〉 (15)

uniformly on [0, T ]. Similarly, un → u in w-Lp([0, T ]; w-X) if∫ T

0

〈un(t), v(t)〉dt→
∫ T

0

〈u(t), v(t)〉dt , (16)

for every v ∈ Lp
′
([0, T ];X ′) with 1 ≤ p <∞ and p′ = p/(p−1) the Hölder conjugate

of p.

1.5. Compactness theorems.

Theorem 4 (Rellich). The embedding Ht(T) ↪→ Hs(T) is compact for all real
numbers s < t.

This statement is equivalent to saying that if un ⇀ u weakly in Ht(T), then
un → u strongly in Hs(T).

Proof. Assume that un ⇀ 0 weakly in Ht(T). It is sufficient to prove that this
implies un → 0 strongly in Hs(T). Let ε > 0, and estimate

‖un‖2Hs =
∑
|k|≤κ

(1 + |k|2)s |ûk|2 +
∑
|k|>κ

(1 + |k|2)s−t (1 + |k|2)t |ûk|2

≤
∑
|k|≤κ

(1 + |k|2)s |ûk|2 + (1 + |κ|2)s−t ‖un‖2Ht

≤
∑
|k|≤κ

(1 + |k|2)s |ûk|2 +
ε

2
(17)

provided that κ is chosen large enough. This choice can be made independent of
n because the weak convergence in Ht implies that the Ht-norm of un is bounded
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independent of n. The first term on the right of (17) is a norm on the finite
dimensional subspace PκL2(T) where weak and strong topology coincide. Thus,
this term can also be made less than ε

2 choosing n sufficiently large. �

Corollary 5. For every T > 0 the embedding

L2([0, T ];L2(T))←↩ C([0, T ]; w-L2(T)) ∩ w-L2([0, T ]; w-H1(T)) , (18)

is continuous, where the intersection on the right is endowed with the relative topol-
ogy induced by the inclusion map. (In other words, a sequence converges in the
intersection iff it converges in each of the spaces separately.)

Proof. Let un be a sequence in the intersection on the right, converging to zero in
C([0, T ]; w-L2(T)) as well as in w-L2([0, T ]; w-H1(T)). Let ε > 0. Then, using the
inequality

‖v‖2
L2 ≤ ‖v‖H−1 ‖v‖H1 (19)

which is a direct consequence of the Cauchy-Schwarz inequality in the Fourier rep-
resentation, followed by a Young inequality, we estimate∫ T

0

‖un‖2L2 dt ≤
∫ T

0

‖un‖H−1 ‖un‖H1 dt

≤ 1
2δ

∫ T

0

‖un‖2H−1 dt+
δ

2

∫ T

0

‖un‖2H1 dt

≤ 1
2δ

∫ T

0

‖un‖2H−1 dt+
ε

2
(20)

provided that δ is chosen small enough. This choice can be made independent of n
because the weak convergence in w-L2([0, T ]; w-H1(T)) implies boundedness with
respect to the norm. Moreover, convergence in C([0, T ]; w-L2(T)) implies, by the
Rellich theorem, convergence in C([0, T ];H−1(T)). Thus, the first term on the right
of (20) can also be made less than ε/2 choosing n sufficiently large. �

The following theorem will be needed later to lift the preceding L2-type conti-
nuity result into Lp spaces of higher index.

Theorem 6. If 1 < p < q < r <∞, the embedding

Lq(U)←↩ Lp(U) ∩ w-Lr(U) (21)

is continuous.

This statement is equivalent to saying that if un → u strongly in Lp and un ⇀ u

weakly in Lr, then un → u strongly in any intermediate Lq.

Proof. As before, we only need to consider a sequence un → 0 strongly in Lq and
un ⇀ 0 weakly in Lr. Let ε > 0. By the Young inequality, for every δ > 0 and
pairs of positive conjugate exponents satisfying

1
s

+
1
s′

=
1
t

+
1
t′

= 1 , (22)

there exists a constant c(δ) such that

|un|q = |un|
q
s |un|

q
s′ ≤ c(δ) |un|

tq
s + δ |un|

t′q
s′ . (23)
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Choosing

t =
r − p
r − q

and s =
q

p

r − p
r − q

(24)

we first observe that, due to the condition 1 < p < q < r < ∞, all conjugate
exponents s, s′, t, and t′ are positive and larger than 1. We can thus proceed and
conclude that ∫

U

|un|q dx ≤ c(δ)
∫
U

|un|p dx+ δ

∫
U

|un|r dx (25)

Since un is weakly convergent in Lr, it is, in particular, bounded in the Lr norm
independent of n. By choosing δ sufficiently small, we can ensure that the second
term on the right is less than ε/2. Moreover, un → 0 in Lp, so that, for some N
large enough, the first term is also less than ε/2 for every n ≥ N . We conclude
that un → 0 strongly in Lq. �

The following is a weak version of the Arzelà–Ascoli theorem, which we state
here without proof.

Theorem 7 (Arzelà–Ascoli). Let X be a Banach space, and let un ∈ C([0, T ]; w-X)
be a sequence of functions. Assume that

(i) {un} is pointwise bounded, i.e. for every t ∈ [0, T ] the set {un(t)} is
bounded;

(ii) {un} is weakly equicontinuous, i.e. for every ψ ∈ X ′ the set 〈ψ, un〉 is
equicontinuous.

Then {un} is relatively compact in C([0, T ]; w-X), i.e. there exists a subsequence,
still denoted un, and a function u ∈ C([0, T ]; w-X), so that

sup
0≤t≤T

|〈un − u, ψ〉| → 0 (26)

as n→∞ for every ψ ∈ X ′.

2. The Fisher–Kolmogorov equation

The Fisher–Kolmogorov equation,

∂tu = ∂xxu+ (1− u)um , (27a)

u(0) = uin , (27b)

where m is an even positive integer, models the concentration of the autocatalyst
in an autocatalytic chemical reaction of order m+ 1.

Let us suppose for the moment that the Fisher–Kolmogorov possesses a smooth
solution. We multiply the equation with a test function ψ ∈ H1(T) and integrate
in space and time, obtaining

〈u(t2), ψ〉 − 〈u(t1), ψ〉 = −
∫ t2

t1

〈ux, ψx〉dt+
∫ t2

t1

〈(1− u)um, ψ〉dt . (28)

This expression makes sense even if smooth solutions to (27) do not exist. This
motivates the following definition.

Definition 8. We say that u solves the weak Fisher–Kolmogorov equation, if

u ∈ C([0, T ];L2(T)) ∩ L2([0, T ];H1(T)) ∩ Lm+2([0, T ];Lm+2(T)) , (29)

and u satisfies (28) for every ψ ∈ H1(T) and every [t1, t2] ⊂ [0, T ].
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3. Existence of weak solutions

We construct the solution u to the weak form of the Fisher–Kolmogorov equation
from a sequence {un} of solutions to an approximate, regularized system in the limit
of vanishing regularization. There are many different ways to regularize a PDE,
and an effective choice is not always obvious. For equations that are posed on the
torus, it is easiest to project the system onto a finite number of Fourier modes.
More precisely, we apply the projector Pn to each of (27),

∂tun = ∂xxun + Pn((1− un)umn ) , (30a)

un(0) = Pnuin . (30b)

Note that in general un(t) 6= Pnu(t), even though this is true initially. The reason
is that projection does not commute with multiplication, so that the projector on
the last term of (30a) cannot be removed, and the regularized evolution equation
differs from the original equation. As any function in L2 can be approximated
by functions with a finite number of nonvanishing Fourier coefficients, we hope to
recover a solution to the full Fisher–Kolmogorov equation in the limit n→∞.

3.1. Existence of the regularized solution. Note that (30) is an ordinary dif-
ferential equation with Lipshitz right hand side. This is immediate by expanding
un as a (finite!) Fourier sum. Differentiation in x corresponds to multiplication
by constants in the Fourier representation, multiplication corresponds to convolu-
tion, and the projection corresponds to dropping some terms from this convolution.
Thus, in the Fourier representation, the right hand side of (30a) is just a (messy)
polynomial in the Fourier coefficients, hence satisfies a Lipshitz condition.

The classical Picard existence theory for ordinary differential equations (which
is not the topic of these notes, but can be found in most books on differential
equations), asserts that, for every fixed n, there exists a time Tn so that (30) has a
solution

un ∈ C1([0, Tn); PnL2(T)) . (31)

Moreover, if Tn denotes the supremum over all times for which such solution exists,
then Tn <∞ only if ‖un(t)‖ → ∞ as t→ Tn, where ‖ · ‖ denotes any norm on the
finite dimensional vector space PnL2(T).

In other words, a solution to our regularized equation (30) can only cease to exist
by blowing up. In the following, we show that blow-up does not occur. However,
(31) gives us the right to perform the necessary manipulations—initially only up
to Tn, then, by extension, up to t =∞.

3.2. A priori estimates. The term “a priori estimates” in the context of partial
differential equations refers to estimates on the solution that are performed under
the yet unproven assumption that a solution exists, and that this solution is smooth
enough to make all the steps in the derivation of the estimate true. Usually, finding
good a priori estimates is the key difficulty in proving existence of solutions, often
so much so that authors publish only the estimates, but do not bother to write
down full proofs.

Turning an a priori estimate into a proof works by proving that the same esti-
mate holds for the regularized system (which is often, but not always, true), and
passing to the limit. In the following, we will work with the regularized solution,
known to exist at least for a short while, from the start.
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Multiplying (30a) with un and integrating in space, we obtain
1
2

d
dt

∫
T
u2
n dx = −

∫
T
|∂xun|2 dx+

∫
T
um+1
n dx−

∫
T
um+2
n dx . (32)

Note that the torus does not have a boundary—hence no boundary terms when
integrating by parts. Moreover, the projector Pn is self-adjoint with respect to the
L2 inner product, so that∫

un Pnumn dx =
∫

Pnun umn dx =
∫
un u

m
n dx ; (33)

similarly for the last term in (32).
Using the Hölder and Young inequalities, we find that∫

T
um+1 dx =

∫
T
u
m+1
p u

m+1
p′ dx

≤
(∫

T
u
m+1
p q dx

) 1
q
(∫

T
u
m+1
p′ q′ dx

) 1
q′

≤ 1
q

∫
T
u
m+1
p q dx+

1
q′

∫
T
u
m+1
p′ q′ dx , (34)

where
1
p

+
1
p′

= 1 and
1
q

+
1
q′

= 1 . (35)

When applying this estimate to (32), we need to “interpolate” the intermediate
term of indefinite sign between the negative definite term of higest order, and the
lowest order term. Thus, we demand that

m+ 1
p

q = 2 and
m+ 1
p′

q′ = m+ 2 , (36)

which implies, after some simple algebra, that

p =
m(m+ 1)

2
, q = m, p′ =

m(m+ 1)
m(m+ 1)− 2

, and q′ =
m

m− 1
. (37)

Inserting this estimate into (32), we obtain
1
2

d
dt

∫
T
u2
n dx ≤ −

∫
T
|∂xun|2 dx+

1
m

∫
T
u2
n dx− 1

m

∫
T
um+2
n dx . (38)

Dropping the negative definite terms from the right, we obtain the differential
inequality of the form

d
dt

∫
T
u2
n dx ≤ c

∫
T
u2
n dx , (39)

which, upon integration in time, proves that∫
T
u2
n(x, t) dx ≤ ect

∫
T
u2
n(x, 0) dx = ect

∫
T
(Pnuin)2 dx ≤ ect

∫
T
(uin)2 dx . (40)

This estimate proves that un cannot blow up in finite time; the time interval of
existence asserted in Section 3.1 is therefore Tn = ∞. Moreover, the estimate is
uniform in n; it is clearly not uniform in t, but this is does not matter. We have
therefore shown that

{un} is bounded in L∞([0, T ];L2(T)) (41)

for any fixed T > 0.
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Integrating (38) in time and rearranging terms, we obtain

∫ T

0

∫
T
|∂xun|2 dxdt+

1
m

∫ T

0

∫
T
um+2
n dxdt

≤
∫

T
u2
n(x, 0) dx−

∫
T
u2
n(x, T ) dx+

1
m

∫ T

0

∫
T
u2
n dxdt . (42)

All the terms on the right are bounded by (41) independent of n. Since each term
on the left is non-negative, each must be bounded independent of n as well. In
other words,

{un} is bounded in L2([0, T ];H1(T)) (43)

and

{un} is bounded in Lm+2([0, T ];Lm+2(T)) . (44)

Boundedness of a sequence in a Banach space implies the existence of a weakly
convergent subsequence. However, weak convergence is not sufficient to assert that
the limit will actually solve the full Fisher–Kolmogorov equation. Thus, we need
so-called compactness results to strengthen the notion of convergence of our ap-
proximating sequence.

3.3. Compactness theorems. We apply the Arzelà–Ascoli theorem, Theorem 7,
to our approximating sequence {un} with X = L2(T). Pointwise boundedness has
already been proved, as stated in (41). To prove weak equicontinuity, we integrate
(30) in time, multiply with a test function ψk ∈ PkL2(T) for some fixed k, and
integrate in space, so that

∫
T
ψk(x)un(x, t2) dx−

∫
T
ψk(x)un(x, t1) dx

=
∫ t2

t1

∫
T
ψk ∂xxun dxdt+

∫ t2

t1

∫
T
ψk Pn((1− un)umn ) dxdt . (45)

Without loss of generality, assume that n ≥ k, so that the projector in the last term
is redundant. Integrating by parts in the first term on the right, taking absolute
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values, and applying the Cauchy–Schwarz and Hölder inequalities, we obtain∣∣∣∣∫
T
ψk(x)un(x, t2) dx−

∫
T
ψk(x)un(x, t1) dx

∣∣∣∣
≤
∫ t2

t1

∫
T
|∂xψk| |∂xun|dx dt+

∫ t2

t1

∫
T
|ψk| |umn |dx dt+

∫ t2

t1

∫
T
|ψk| |um+1

n |dx dt

≤ ‖∂xψk‖L∞
(∫ t2

t1

∫
T

12 dxdt
) 1

2
(∫ t2

t1

∫
T
|∂xun|2 dxdt

) 1
2

+ ‖ψk‖L∞
(∫ t2

t1

∫
T

dxdt
) 2
m+2

(∫ t2

t1

∫
T
um+2
n dxdt

) m
m+2

+ ‖ψk‖L∞
(∫ t2

t1

∫
T

dxdt
) 1
m+2

(∫ t2

t1

∫
T
um+2
n dxdt

)m+1
m+2

≤ c(ψk) |t2 − t1|
1
2 ‖un‖L2([0,T ];H1(T))

+ c(ψk) |t2 − t1|
2

m+2 ‖un‖mLm+2([0,T ];Lm+2(T))

+ c(ψk) |t2 − t1|
1

m+2 ‖un‖m+1

Lm+2([0,T ];Lm+2(T))
. (46)

Since {un} is bounded in the norms indicated, as stated in (43) and (44), nothing
on the right of (46) depends on n, and we have proved weak equicontinuity with
test functions from PkL2(T).

We extend the estimate to an arbitrary test function ψ ∈ L2(T) by density as
follows. Let ε > 0 fixed. Since ψk ≡ Pkψ → ψ as k →∞, there exists some k such
that

‖ψ − ψk‖L2(T)
≤ ε

3K
, (47)

where K is a bound on {un} in L∞([0, T ];L2(T)). For this value of k, choose t2− t1
small enough such that the right side of (46) is less than ε/3. Then∣∣∣∣∫

T
ψ(x)un(x, t2) dx−

∫
T
ψ(x)un(x, t1) dx

∣∣∣∣
≤
∣∣∣∣∫

T
(ψ(x)− ψk(x)un(x, t2) dx

∣∣∣∣+
∣∣∣∣∫

T
ψk(x) (un(x, t2)− un(x, t1)) dx

∣∣∣∣
+
∣∣∣∣∫

T
(ψk(x)− ψ(x)un(x, t1) dx

∣∣∣∣
≤ ‖ψ − ψk‖L2(T)

‖un‖L∞([0,T ];L2(T))
+
ε

3
+ ‖ψ − ψk‖L2(T)

‖un‖L∞([0,T ];L2(T))

≤ ε

3
+
ε

3
+
ε

3
= ε . (48)

This completes the proof of weak equicontinuity for {un}.
In conclusion, we have found that the sequence {un} is relatively compact in

C([0, T ]; w-L2(T)). It is also relatively compact in w-L2([0, T ]; w-H1(T)) due to
(43). Hence, by the Rellich compactness theorem in the form of Corollary 5, we
conclude that {un} is relatively compact in L2([0, T ];L2(T)).
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3.4. Passing to the limit. We now have all the ingredients to conclude the ex-
istence of a limit function u in the following sense. Since {un} is bounded in
L2([0, T ];H1(T)), there exists weakly converging subsequence which, for simplic-
ity, we still denote by un. (One can actually show with little extra effort that
the entire sequence converges—this is of interest when using the approximate sys-
tem as a numerical method.) A similar argument follows from boundedness in
Lm+2([0, T ];Lm+2(T)), so that

un ⇀ u in w-L2([0, T ]; w-H1(T)) , (49a)

un ⇀ u in w-Lm+2([0, T ]; w-Lm+2(T)) . (49b)

Moreover, the conclusion of the previous section implies that (strictly speaking once
again by extracting subsequences)

un → u in L2([0, T ];L2(T)) , (49c)

un → u in C([0, T ]; w-L2(T)) . (49d)

Note that the limit function does not depend on the topology. This can ben seen as
follows. The w-L2([0, T ]; w-L2(T)) topology is weaker than each of stated topolo-
gies, but is still Hausdorff, i.e. it separates points. Thus, after passing to a common
subsequence, each of the four convergence statements can be weakened to conver-
gence in w-L2([0, T ]; w-L2(T)), so that the unique limit function is also common to
all.

However, the existence of a limit does not guarantee that this limit solves the full
Fisher–Kolmogorov equation in any sense. Obviously, the limit we have achieved so
far is not even twice continuously differentiable—thus we cannot expect that (27)
is satisfied in the classical sense—but matches our requirements in the definition of
a weak solution perfectly.

Since the approximate system (30) is posed on a finite dimensional subspace of
L2, its weak and strong formulations are equivalent. We will now show that each
term in the weak formulation of (30) converges to the corresponding term in (28).

Fix ψ ∈ H1(T). First, (49d) implies that

〈un(t), ψ〉 → 〈u(t), ψ〉 (50)

for every t ∈ [0, T ]. Hence, the two terms on the left of (28) are recovered as
n→∞.

Next, (49a) implies that∫ t2

t1

〈∂xun, ∂xψ〉dt→
∫ t2

t1

〈∂xu, ∂xψ〉dt . (51)

(Note that we are again using the L2 inner product to represent functionals on H1.)
To prove convergence in the nonlinear term, we note that, by the mean value

theorem,
|umn − um| ≤ m |un − u|

(
|un|m−1 + |u|m−1

)
. (52)

Hence,∫ t2

t1

〈umn − um, ψ〉dt ≤ m ‖ψ‖L∞
∫ t2

t1

∫
T
|un − u|

(
|un|m−1 + |u|m−1

)
dx dt

≤ m ‖ψ‖
L∞
‖un − u‖L(m+2)/3

(
‖un‖m−1

Lm+2 + ‖u‖m−1

Lm+2

)
. (53)
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The terms in parentheses are bounded by (44). Moreover, un → u in L
(m+2)/3.

When (m+ 2)/3 ≤ 2, this is a direct consequence of (49c); when 2 < (m+ 2)/3 <
m+ 2, this results from applying Theorem 6 to (49b) and (49c).

A similar argument can be made for weak convergence of the difference um+1
n −

um+1, so that we conclude that∫ t2

t1

〈Pn((1− un)umn ), ψ〉dt→
∫ t2

t1

〈(1− u)um, ψ〉dt (54)

as n → ∞ for every ψ ∈ PkL2(T) with k fixed; hence, by density, also for every
ψ ∈ H1(T). This completes the proof.


