Partial Differential Equations

Homework 8

due November 26, 2008

In the following, \mathbb{T} denotes the 1-torus, i.e. $\mathbb{T} = \mathbb{R} \mod 2\pi$.

- 1. Let $U \subset \mathbb{R}^n$ be open and let u_n and v_n be two sequences in $L^2(U)$.
 - (a) Suppose $u_n \to u$ strongly and $v_n \rightharpoonup v$ weakly, and that, moreover, $u_n v_n \in L^2(U)$ for every $n \in \mathbb{N}$ and also $uv \in L^2(U)$. Show that $u_n v_n \rightharpoonup uv$ weakly.
 - (b) Give an example that when $u_n \rightharpoonup u$ only weakly in (a), then $u_n v_n$ may not converge to uv weakly.
- 2. (a) Show that, for every $u \in H^2(\mathbb{T})$,

$$||u||_{H^1}^2 \le ||u||_{L^2} ||u||_{H^2}$$
.

(b) Consider the Fisher–Kolmogorov equation on T,

$$u_t = u_{xx} + (1 - u) u^m,$$

 $u(0) = u^{\text{in}}.$

where m is an even positive integer. Use the result from (a), as well as Question 4 of the previous homework set, to prove that that

$$\limsup_{t\to\infty}\left\|u(t)\right\|_{H^1}\leq C$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data u^{in} . You may assume that u is sufficiently differentiable so that all your formal manipulations are justified.

3. Prove the following version of the *Poincaré inequality*: For every $u \in H^1(\mathbb{T})$ which has zero mean, i.e. where

$$\int_{\mathbb{T}} u \, dx = 0 \,,$$

we have

$$\int_{\mathbb{T}} |u|^2 dx \le C \int_{\mathbb{T}} |u_x|^2 dx.$$

Find the best estimate for C.