Partial Differential Equations

Homework 9

due December 3, 2008

1. Consider the inviscid Burger's equation on \mathbb{T}, i.e.

$$
u_{t}+u u_{x}=0 .
$$

(a) Define an approximate solution u_{n} by applying the projector \mathbb{P}_{n} which projects onto modes up to wave number n to Burger's equation. Show that

$$
\left\|u_{n}(t)\right\|_{L^{2}}=\left\|u_{n}(0)\right\|_{L^{2}} .
$$

(b) Conclude that $\left\{u_{n}\right\}$ has a subsequence that converges to some u weakly in $L^{2}(\mathbb{T})$, and that

$$
\|u(t)\|_{L^{2}} \leq\|u(0)\|_{L^{2}} .
$$

Why do you have an inequality rather than equality?
Notes: You are not required to show that u solves Burger's equation in any sense. This would require a much more involved analysis. You can use, without proof, the fact that if $x_{n} \rightharpoonup x$ weakly on a Hilbert space, then

$$
\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\| .
$$

2. (From Evans, p. 164, Question 13.) Let $u \in C(\mathbb{R} \times[0, T])$ for some $T>0$ be a weak solution to the scalar conservation law

$$
\begin{gathered}
u_{t}+F(u)_{x}=0 \quad \text { in } \mathbb{R} \times(0, T), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\} .
\end{gathered}
$$

Assume further that for any fixed $t \in[0, T], u(\cdot, t)$ has compact support in \mathbb{R}, and that $F(0)=0$. Show that

$$
\int_{\mathbb{R}} u(x, t) d x=\int_{\mathbb{R}} g(x) d x
$$

for every $t \in[0, T]$.
3. (From Evans, p. 164, Question 14.) Compute explicitly the unique entropy solution of

$$
\begin{gathered}
u_{t}+u u_{x}=0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R} \times\{t=0\}
\end{gathered}
$$

for

$$
g(x)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1<x<0 \\ 2 & \text { if } 0<x<1 \\ 0 & \text { if } 1<x\end{cases}
$$

Draw the characteristic curves in an (x, t)-plot, being sure to document all qualitative changes in the solution for $t>0$.

