Real Analysis

Final Exam

December 19, 2008

1. A "totally unlucky" number is one that contains no seven in any decimal expansion. Compute the Lebesgue measure of the totally unlucky numbers in $[0,1] .^{1}$
2. Let (Ω, Σ, μ) be a measure space, $1 \leq p<\infty$, and $f: \Omega \rightarrow[0, \infty]$ a measurable function. Show that

$$
\begin{equation*}
\mu\{x \in \Omega: f(x)>\alpha\} \leq \frac{1}{\alpha^{p}} \int_{\Omega} f^{p} d \mu \tag{10}
\end{equation*}
$$

3. Let (Ω, Σ, μ) be a measure space and $\mathrm{f}: \Omega \rightarrow[0, \infty]$ a measurable function with

$$
0<\int_{\Omega} \mathrm{fd} \mu<\infty
$$

Find, with justification,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} n \ln \left(1+\left(\frac{f}{n}\right)^{\alpha}\right) d \mu
$$

when
(a) $\alpha=1$,
(b) $0<\alpha<1$,
(c) $\alpha>1$.
4. Let $1<p<\infty$. For $f \in L^{p}((0, \infty))$, which for simplicity you may assume nonnegative, define the local average function

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(\xi) d \xi .
$$

[^0]Show that $\mathrm{F} \in \mathrm{L}^{\mathrm{p}}((0, \infty))$ with

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

Hint: Find a differential equation for F, then multiply by F^{p-1} and integrate. You may assume first that $f \in C_{c}^{\infty}((0, \infty))$, then extend by density. ${ }^{2}$
5. Let H be a Hilbert space and $\mathrm{V} \subset \mathrm{H}$ a closed subspace. In linear algebra, the quotient space H / V is defined as the space of cosets $\{x+V: v \in V\}$. (In other words, it is the set of equivalence classes with respect to the equivalence relation $x \sim y$ if $x-y \in V$.) How can you define an inner product on H / V so that the quotient map $\mathrm{p}: \mathrm{H} \rightarrow \mathrm{H} / \mathrm{V}$ defined by $p(x)=x+V$ is continuous?
6. Let H be a Hilbert space, $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset H$ and $x \in H$ such that

$$
x_{n} \rightharpoonup x
$$

weakly.
(a) Show that

$$
\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|
$$

(b) Give an example where (a) holds with strict inequality.
7. Show that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\lim _{y \rightarrow 0} \int_{\mathbb{R}^{n}}|f(x)-f(x-y)| d x=0 \tag{10}
\end{equation*}
$$

8. Compute the Fourier transform of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=x e^{-x^{2}}
$$

Hint: Recall from class that

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\mathrm{i} \xi x} f(x) d x
$$

when $g(x)=e^{-x^{2}}$, then

$$
\begin{equation*}
\hat{\mathrm{g}}(\xi)=\frac{1}{\sqrt{2}} \mathrm{e}^{-\xi^{2} / 4} \tag{10}
\end{equation*}
$$

[^1]9. Let $T \in \mathcal{D}^{\prime}(\mathbb{R})$ such that $\chi T=0$. Prove that T must be a multiple of the δ distribution.

Hint: Choose two different test functions $\phi, \psi \in \mathcal{D}(\mathbb{R})$ and apply T to $\theta=\phi / \phi(0)-$ $\psi / \psi(0)$.

[^0]: ${ }^{1}$ From: http://www.math.nthu.edu.tw/~dhtsai/real-analysis-sample-exam-with-solution-2007-11-12.pdf

[^1]: ${ }^{2}$ From: http://www.math.umn.edu/ ${ }^{\sim}$ lewicka/8601-2/ex19.pdf

