Real Analysis

Midterm Exam

October 22, 2008

1. Let (Ω, Σ, μ) be a measure space and $E \in \Sigma$. Show that

$$\mu_E(A) = \mu(A \cap E) \qquad \text{for all } A \in \Sigma$$

defines a measure.

(10)

- 2. Show that a monotonic function on \mathbb{R} is Borel-measurable. (10)
- 3. Let (Ω, Σ, μ) be a measure space and $f: \Omega \to [0, \infty]$ a measurable function. Show that, for 0 ,

$$\int_{\Omega} f^{p} d\mu = p \int_{0}^{\infty} t^{p-1} \mu(\{x \in \Omega \colon f(x) > t\}) dt.$$
(10)

4. Theorem on differentiation under the integral.

Let (Ω, Σ, μ) be a measure space and let $I \subset \mathbb{R}$ open. Suppose that $f: \Omega \times I \to \mathbb{R}$ satisfies

- (i) $f(\cdot, t)$ is measurable for every fixed $t \in I$;
- (ii) $f(x, \cdot)$ is differentiable for almost every fixed $x \in \Omega$;
- (iii) $|\partial f(x,t)/\partial t| \leq g(x)$ for some $g \in L^1(\Omega).$

Then

$$\frac{d}{dt}\int_{\Omega}f(x,t)\,d\mu(x) = \int_{\Omega}\frac{\partial f(x,t)}{\partial t}\,d\mu(x)$$

for every $t \in I$.

(a) Prove the theorem.

(b) Let

$$I(t) = \int_0^\infty \frac{\sin x}{x} e^{-tx} dx.$$

Verify that you may differentiate under the integral, then compute I'(t).

(c) Use the result from (b) to show that the improper integral

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \arctan(\infty) = \frac{\pi}{2} \,. \tag{10+10+10}$$

- 5. Let (Ω, Σ, μ) be a finite measure space. Show that for $1 \le p \le r \le \infty$, $L^p(\Omega) \supset L^r(\Omega)$. (10)
- 6. Let (Ω, Σ, μ) be a measure space, 1 and <math>1/p + 1/q = 1. Let $\ell \in L^p(\Omega)^*$ be represented by a function $g \in L^q(\Omega)$ in the sense that

$$\ell(f) = \int_{\Omega} f g \, d\mu$$

for every $f \in L^p(\Omega)$. Show that

$$\|\ell\|_{L^{p}(\Omega)^{*}} = \|g\|_{L^{q}(\Omega)}.$$
(10)

(a) Find a sequence of bounded, Lebesgue-measurable sets in R whose characteristic functions converge weakly in L²(R) to a function f with the property that 2f is a characteristic function of a set with positive measure.
 Note: Full credit if you verify that your example has the requested properties

Note: Full credit if you verify that your example has the requested properties on some (nontrivial) subspace of L^2 .

(b) How about the possibility that f/2 is a characteristic function?

(10+10)