Real Analysis

Homework 10

due November 19, 2008

1. (a) Show that for $f \in L^1(\mathbb{R}^n)$,

$$\lim_{y \to 0} \int_{\mathbb{R}^n} |f(x) - f(x - y)| \, dx = 0 \, .$$

Hint: Use mollifiers.

- (b) Suppose that, moreover, $g \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$. Show that $f * g \in C(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$.
- 2. Prove Parseval's identity

$$\int_{\mathbb{R}^n} u(x)\,\overline{v}(x)\,\mathrm{d}x = \int_{\mathbb{R}^n} \hat{u}(\xi)\,\overline{\hat{v}}(\xi)\,\mathrm{d}\xi$$

Note: No need to prove from scratch, you may derive this from the Plancharel identity

$$||u||_2 = ||\hat{u}||_2$$

by a polarization argument.

3. Prove the Riemann-Lebesgue lemma, i.e. for $f \in L^1(\mathbb{R}^n)$, $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$. Hint: Note that

$$(f(\cdot - y))(\xi) = e^{-iy\cdot\xi} \hat{f}(\xi).$$

4. Show that the definition of the Fourier transform on L^2 does not depend on the choice of the approximating sequence.