Real Analysis

Homework 11

due November 26, 2008

- 1. Compute the Fourier transform on \mathbb{R} of $\chi_{[-1,1]}(x)$.
- 2. (From Folland.) Let f(x) = x on $[-\pi, \pi)$, interpreted as a function on \mathbb{T} .
 - (a) Compute the Fourier series of f.
 - (b) Show that

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \,.$$

Hint: Parseval identity.

- 3. Prove the Riemann-Lebesgue lemma for Fourier series, i.e. for $f \in L^1(\mathbb{T}^n)$, $\hat{f}_k \to 0$ as $|k| \to \infty$.
- 4. (From Folland.) Let

$$D_m(x) = \frac{1}{2\pi} \sum_{|k| \le m} e^{ikx}$$

be the mth Dirichlet kernel. Show that

$$||D_m||_{L^1(\mathbb{T})} \to \infty$$
 as $m \to \infty$.