Real Analysis

Homework 12

due December 3, 2008

- 1. Show that $\{e^{ikx} : k \in \mathbb{Z}\}$ separates points on \mathbb{T} .
- 2. Let $\Omega \subset \mathbb{R}^n$ be open and μ a (positive) Borel measure such that $\mu(K) < \infty$ for all compact $K \subset \Omega$. Show that

$$T_{\mu}(\phi) = \int_{\Omega} \phi \,\mathrm{d}\mu$$

defines a distribution $T_{\mu} \in \mathcal{D}'(\Omega)$.

3. Let $\Omega \subset \mathbb{R}^n$ be open. Let f_j be a sequence in $W^{1,1}_{\text{loc}}(\Omega)$, the space of $L^1_{\text{loc}}(\Omega)$ functions whose first order distributional derivatives are also $L^1_{\text{loc}}(\Omega)$, such that

$$f_j \to f \qquad \text{in } L^1_{\text{loc}}(\Omega)$$

and, for fixed $i \in 1, \ldots, n$,

$$\partial_i f_j \to g \qquad \text{in } L^1_{\text{loc}}(\Omega)$$

where $\partial_i f$ denotes the distributional partial derivative in the *i*th coordinate direction. Show that

$$\partial_i f = g$$
.

Hint: See comments in Lieb and Loss, Section 6.7.

4. Let $j \in L^1(\mathbb{R}^n)$ with

$$\int_{\mathbb{R}^n} j \, \mathrm{d}x = 1 \,,$$

and set

$$j_{\varepsilon}(x) = \frac{1}{\varepsilon^n} j\left(\frac{x}{\varepsilon}\right).$$

Show that

$$j_{\varepsilon} \to \delta$$
 in $\mathcal{D}'(\mathbb{R}^n)$

as $\varepsilon \to 0$ (where j_{ϵ} is identified with a distribution in the canonical way).