Real Analysis

Homework 3

due September 24, 2008

1. Let μ denote the Lebesgue measure on \mathbb{R} . Give a self-contained proof of the *outer* regularity of μ , i.e., show that

$$\mu(A) = \inf\{\mu(E) \colon E \text{ open and } A \subset E\}.$$

- 2. (From Lieb and Loss.)
 - (a) Show that $F: \Omega \to \mathbb{R}$ is measurable if and only if $\{x \in \Omega: f(x) > a\}$ is measurable for every $a \in \mathbb{Q}$.
 - (b) For $a \in \mathbb{Q}$ and f, g measurable, show that

$$\{x \in \Omega \colon f(x) + g(x) > a\} = \bigcup_{b \text{ rational}} \{x \in \Omega \colon f(x) > b\} \cap \{x \in \Omega \colon g(x) > a - b\}.$$

Conclude that f + g measurable.

- (c) Similarly, show that fg measurable if f and g are measurable.
- 3. (From Lieb and Loss.) Let $f \colon \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f(x) = |x|^{-p} \chi_{\{|x|<1\}}(x) \,.$$

Compute the integral of f over \mathbb{R}^n in two ways:

- (a) Use polar coordinates and compute the integral by the standard rules of calculus.
- (b) Compute $\mathcal{L}^n(\{x \in \mathbb{R}^n : f(x) > a\})$ and use the definition of the Lebesgue integral.
- 4. Prove that a function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous if and only if it is *upper semicontinuous* (the set $\{x : f(x) < t\}$ is open for all t) and *lower semicontinuous* (the set $\{x : f(x) > t\}$ is open for all t).