Real Analysis

Homework 5

due October 8, 2008

1. (From Folland.) Let

$$
f(x, y)=(1-x y)^{-a}
$$

with $a>0$. Investigate the existence and equality of

$$
\int_{[0,1] \times[0,1]} f \mathrm{~d}(x, y), \quad \int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y, \quad \text { and } \quad \int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

2. (From Folland.) Show that

$$
\int_{0}^{\infty} \mathrm{e}^{-s x} x^{-1} \sin ^{2} x \mathrm{~d} x=\frac{1}{4} \ln \left(1+4 s^{-2}\right)
$$

for $s>0$ by integrating $\mathrm{e}^{-s x} \sin (2 x y)$ with respect to x and y.
3. (From Lieb and Loss.) Let (Ω, Σ, μ) be a finite measure space, let f and $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ be complex-valued, measurable functions on Ω with

$$
\lim _{j \rightarrow \infty} f_{j}(x)=f(x)
$$

for almost every $x \in \Omega$, and assume that

$$
\int_{\Omega}\left|f_{j}\right|^{2} \mathrm{~d} \mu<1
$$

and

$$
\int_{\Omega}|f|^{2} \mathrm{~d} \mu<\infty
$$

(a) Prove that

$$
\int_{\Omega}\left|f_{j}-f\right|^{p} \mathrm{~d} \mu \rightarrow 0
$$

as $j \rightarrow \infty$ for any $0<p<2$.
(b) Construct a counter-example to show that this can fail for $p=2$.
4. Let (Ω, Σ, μ) be a measure space and $f \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some $q \in[1, \infty)$. Then $f \in L^{p}(\Omega)$ for all $p>q$ and

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

