Real Analysis

Homework 6

due October 15, 2008

- 1. (From Folland.) Suppose $0 < p_0 < p_1 \leq \infty$. Find examples of functions f on $(0, \infty)$ endowed with the Lebesgue measure such that $f \in L^p$ if and only if
 - (a) p_0
 - (b) $p_0 \le p \le p_1$
 - (c) $p = p_0$

Hint: Consider functions of the form $x^{-a} |\ln x|^b$.

- 2. (From Folland.) If $1 \le p < r \le \infty$, show that $L^p \cap L^r$ is a Banach space with norm $||f|| = ||f||_p + ||f||_r$, and if p < q < r, the inclusion map id: $L^p \cap L^r \to L^q$ is continuous.
- 3. Write up the proof of the uniform boundedness principle (cf. Lieb and Loss, Theorem 2.12) for the case $p = \infty$.
- 4. Let $f_k(x) = k^{\frac{1}{p}} g(kx)$ for some fixed $g \in L^p(\mathbb{R})$ with $1 . Show that <math>f_k$ converges weakly, but not strongly to zero in $L^p(\mathbb{R})$.