Real Analysis

Homework 8

due November 5, 2008

1. Let (Ω, Σ, μ) be a measure space. Let $f \in L^p(\Omega)$ for $1 \le p \le \infty$. Show that for every $\varepsilon > 0$ there exists a $g \in L^{\infty}(\Omega)$ such that

$$\|f - g\|_p \le \varepsilon.$$

- 2. Show that the finite unions of half-open intervals for the form [a, b) where $-\infty \leq a \leq b \leq \infty$ and a and b are of the form $n 2^{-m}$ for some $n \in \mathbb{Z}$, $m \in \mathbb{N}$ form an algebra which generates the Borel σ -algebra on \mathbb{R} .
- 3. (From Lieb and Loss.) Suppose the mollifier $j_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ and $f \in C(\mathbb{R}^n)$, show that $f_{\varepsilon} = f * j_{\varepsilon}$ converges to f pointwise, and it does so uniformly on compact subsets of \mathbb{R}^n .
- 4. Let $f_k(x) = \sin(kx)$. Show that f_k converges weakly, but not strongly to zero in $L^p([0,1])$ with 1 .