Partial Differential Equations

Homework 4

due November 12, 2009

1. We have shown in class that if $u \in L^{2}\left((0, T) ; H_{0}^{1}(U)\right)$ and $u^{\prime} \in L^{2}\left((0, T) ; H^{-1}(U)\right)$, then

$$
u \in C\left([0, T] ; L^{2}(U)\right)
$$

and the map $t \mapsto\|u(t)\|_{L^{2}(U)}^{2}$ is absolutely continuous with

$$
\frac{d}{d t}\|u(t)\|_{L^{2}(U)}^{2}=2\left\langle u^{\prime}(t), u(t)\right\rangle_{H^{-1}, H_{0}^{1}}
$$

for a.e. $t \in[0, T]$.
Show that, moreover, there exists a constant $c=c(T)$ such that

$$
\|u\|_{C\left([0, T] ; L^{2}(U)\right)} \leq c\left(\|u\|_{L^{2}\left((0, T) ; H_{0}^{1}(U)\right)}+\left\|u^{\prime}\right\|_{L^{2}\left((0, T) ; H^{-1}(U)\right)}\right) .
$$

2. Let $\left\{w_{k}\right\} \subset H_{0}^{1}(U)$ be an orthonormal basis of $L^{2}(U)$. Show that the set of functions of the form

$$
v=\sum_{k=1}^{N} d_{k}(t) w_{k},
$$

where the d_{k} are smooth functions of t, is dense in $L^{2}\left((0, T) ; H_{0}^{1}(U)\right)$.
3. Evans, p. 425, Problem 1
4. Evans, p. 425, Problem 2
5. Evans, p. 425, Problem 3
6. Evans, p. 425, Problem 4

