
Partial Differential Equations

Homework 5

due December 7, 2009

1. Evans, p. 426, Problem 6

2. Assume W ⊂ Rn is open, u : Rn× [0, T ]→ Rn is a smooth time-dependent vector field
with flow φt, i.e. ∂tφt(a) = u(φt(a), t), and Wt = φt(W ).

Use Liouville’s theorem to prove that

(a)
d

dt

∫
Wt

ρ f dx =

∫
Wt

ρ (∂t + u · ∇)f dx, where ∂tρ+∇ · (ρu) = 0, and

(b)
d

dt

∫
Wt

f dx =

∫
Wt

∂tf dx+

∫
∂Wt

f ν · u dS.

3. Recall the construction of the function spaces for solutions of the Navier–Stokes equa-
tions, where for U ∈ Rn open, bounded, with C2 boundary,

V = {u ∈ C∞c (U,Rn) : ∇ · u = 0} ,

H is the closure of V in L2, and V is the closure of V in H1. Recall the continuous
trace operator γ : E(U)→ H−1/2(∂U) which satisfies γ(u) = ν ·u if u ∈ C∞(U), where

E(U) = {u ∈ L2(U,Rn) : ∇ · u ∈ L2(U,R)}

with the divergence understood in the sense of weak derivatives.

Prove that
H = {u ∈ L2(U,Rn) : ∇ · u = 0 and γ(u) = 0} .

4. In the notation of the previous question, let P denote the L2-orthogonal projector
onto H and define the Stokes operator A : D(A) → H by A = −P∆ with domain
D(A) = H2(U,Rn) ∩ V .

Recall from class that if f ∈ H, then A−1f = u is the unique solution in D(A) of the
Stokes equations. (This was proved by an application of the a Lax–Milgram theorem
followed by an elliptic regularity argument.)
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(a) Show that
〈Au, v〉L2(U,Rn) = 〈u, v〉H1(U,Rn)

for all u, v ∈ D(A), thus conclude that A is a symmetric operator.

Note: First assume u, v ∈ V , then argue by density. Note also that

〈u, v〉H1(U,Rn) =

∫
U

∇u : ∇v dx .

(b) Show that A is self-adjoint.

Note: By part (a), A is symmetric, so it remains to be shown that D(A) = D(A∗),
where

D(A∗) = {u ∈ H : v 7→ 〈u,Av〉L2 is bounded} .
(I.e., v 7→ 〈u,Av〉L2 can be represented by 〈f, v〉L2 by the Riesz representation
theorem.)

(c) Show that A−1 is a compact operator on H.

5. Due to the results in the previous question, there exists a complete L2-orthonormal
sequence {wj} of eigenfuctions of A with corresponding eigenvalues λj, where 0 < λ1 <
λ2 ≤ λ3 ≤ . . . and wj ∈ D(A) for j ∈ N.

Thus, if

u =
∞∑
j=1

uj wj ,

we can define Aα for any α ∈ R by

Aαu =
∞∑
j=1

λαj uj wj ,

〈u, v〉D(Aα) =
∞∑
j=1

λ2α uj vj when u =
∞∑
j=1

uj wj and v =
∞∑
j=1

uj vj

with domain
D(Aα) = {u ∈ H : ‖u‖2D(Aα) = 〈u, u〉D(Aα) <∞} .

Show that D(A1/2) = V .

6. In the notation above, let u ∈ V . Prove that, for n ≤ 3, there exists a constant c such
that

‖u · ∇u‖V ∗ ≤ c ‖u‖
n
2
V ‖u‖

2−n
2

H .

Note: Due to the result in the previous question, we can identify V ∗ = D(A−1/2), so
that

‖v‖V ∗ = ‖A−1/2v‖L2 and 〈v, w〉V ∗,V = 〈A−1/2v, A1/2w〉L2 .
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You will also need the Sobolev inequality in the form given as equation (14) in the
proof of Theorem 5.6.1 in Evans (you can also quote the result from other sources
where the exponents are more explicit).

7. In the notation above, suppose that

um ⇀ 0 weakly in L2((0, T );V ) ,

u′m ⇀ 0 weakly in Lp((0, T );V ∗) .

for some p > 1.

(a) Prove that
um → 0 in C([0, T ];V ∗) .

(b) Then conclude that
um → 0 in L2((0, T );H) .

Hint: For part (a), use the fundamental theorem of calculus, estimate in the V ∗-norm,
and employ an argument similar to the one given in part (1) of the proof of Evans,
Theorem 5.9.4 on p. 287.

You will also need to refer to the compactness of the embedding V ⊂ H.
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