EXAMPLE 8 Figure 3.1.18 shows the graphs y = f(x) of a function and y = f'(x) of its derivative. Observe that

- $\nabla y = f(x)$ has a horizontal tangent line at points where f'(x) = 0;
- ▼ f(x) is increasing on open intervals where f'(x) > 0; and
- ▼ f(x) is decreasing on open intervals where f'(x) < 0.

3.1 PROBLEMS

In Problems 1 through 10, find the indicated derivative by using the differentiation rule in Eqs. (6) and (7):

If
$$f(x) = ax^2 + bx + c$$
, then $f'(x) = 2ax + b$.

- 1. f(x) = 4x 5; find f'(x).
- **2.** $g(t) = 100 16t^2$; find g'(t).
- 3. h(z) = z(25 z); find h'(z).
- **4.** f(x) = 16 49x; find f'(x).
- 5. $y = 2x^2 + 3x 17$; find dy/dx.
- **6.** $x = 16t 100t^2$; find dx/dt.
- 7. $z = 5u^2 3u$; find dz/du.
- 8. v = 5y(100 y); find dv/dy.
- 9. $x = -5y^2 + 17y + 300$; find dx/dy.
- **10.** $u = 7t^2 + 13t$; find du/dt.

In Problems 11 through 20, apply the definition of the derivative (as in Example 1) to find f'(x).

- **11.** f(x) = 2x 1
- **12.** f(x) = 2 3x
- **13.** $f(x) = x^2 + 5$
- **14.** $f(x) = 3 2x^2$
- **15.** $f(x) = \frac{1}{2x+1}$
- **17.** $f(x) = \sqrt{2x + 1}$
- **19.** $f(x) = \frac{x}{1 2x}$
- **20.** $f(x) = \frac{x+1}{x-1}$

Problems 21 through 25 give the position function x = f(t) of a particle moving in a horizontal straight line. Find its location x when its velocity v is zero.

- **21.** $x = 100 16t^2$
- **22.** $x = -16t^2 + 160t + 25$
- $23. \ \ x = -16t^2 + 80t 1$
- **24.** $x = 100t^2 + 50$
- **25.** $x = 100 20t 5t^2$

Problems 26 through 29 give the height y(t) (in feet at time t seconds) of a ball thrown vertically upward. Find the maximum height that the ball attains.

- **26.** $y = -16t^2 + 160t$ **27.** $y = -16t^2 + 64t$ **28.** $y = -16t^2 + 128t + 25$ **29.** $y = -16t^2 + 96t + 50$

In Problems 30 through 35 (Figs. 3.1.19 through 3.1.24), match the given graph of the function f with that of its derivative, which appears among those in Fig. 3.1.25, parts (a) through (f).

- Figure 3.1.19
- **31.** Figure 3.1.20

- **32** Figure 3.1.21
 - Figure 3.1.23

Fig. 3.1.19

Fig. 3.1.21

Fig. 3.1.22

Fig. 3.1.20

Fig. 3.1.23

Fig. 3.1.24

Fig. 3.1.25(a)

Fig. 3.1.25(b)

Fig. 3.1.25(c)

Fig. 3.1.25(d)

Fig. 3.1.25(e)

Fig. 3.1.25(f)

- **36.** The Celsius temperature C is given in terms of the Fahrenheit temperature F by $C = \frac{5}{9}(F 32)$. Find the rate of change of C with respect to F and the rate of change of F with respect to C.
- 37. Find the rate of change of the area A of a circle with respect to its circumference C.

A stone dropped into a pond at time t = 0 s causes a circular ripple that travels out from the point of impact at 5 m/s. At what rate (in square meters per second) is the area within the circle increasing when t = 10?

- **39.** A car is traveling at 100 ft/s when the driver suddenly applies the brakes (x = 0, t = 0). The position function of the skidding car is $x(t) = 100t 5t^2$. How far and for how long does the car skid before it comes to a stop?
- **40.** A water bucket containing 10 gal of water develops a leak at time t = 0, and the volume V of water in the bucket t seconds later is given by

$$V(t) = 10\left(1 - \frac{t}{100}\right)^2$$

until the bucket is empty at time t = 100. (a) At what rate is water leaking from the bucket after exactly 1 min has passed? (b) When is the instantaneous rate of change of V equal to the average rate of change of V from t = 0 to t = 100?

41. A population of chipmunks moves into a new region at time t = 0. At time t (in months) the population numbers

$$P(t) = 100[1 + (0.3)t + (0.04)t^{2}].$$

- (a) How long does it take for this population to double its initial size P(0)? (b) What is the rate of growth of the population when P = 200?
- **42.** The following data describe the growth of the population *P* (in thousands) of Gotham City during a 10-year period. Use the graphical method of Example 4 to estimate its rate of growth in 1989.

YEAR	1984	1986	1988	1990	1992	1994
P	265	293	324	358	395	427

43. The following data give the distance x in feet traveled by an accelerating car (that starts from rest at time t = 0) in the first t seconds. Use the graphical method of Example 4 to estimate its speed (in miles per hour) when t = 20 and again when t = 40.

t	0	10	20	30	. 40	50	60
х	0	224	810	1655	2686	3850	5109

In Problems 44 through 49, use the fact (proved in Section 3.2) that the derivative of $y = ax^3 + bx^2 + cx + d$ is $dy/dx = 3ax^2 + 2bx + c$.

- **44.** Prove that the rate of change of the volume V of a cube with respect to its edge length x is equal to half the surface area S of the cube (Fig. 3.1.26).
- **45.** Show that the rate of change of the volume V of a sphere with respect to its radius r is equal to its surface area S (Fig. 3.1.27).

3.3 PROBLEMS

Find dy/dx in Problems 1 through 12.

1.
$$y = (3x + 4)^5$$

2.
$$y = (2 - 5x)^3$$

3.
$$y = \frac{1}{3x - 2}$$

$$4. \ \ y = \frac{1}{(2x+1)^3}$$

5.
$$y = (x^2 + 3x + 4)^3$$

6.
$$y = (7 - 2x^3)^{-4}$$

7.
$$y = (2-x)^4(3+x)$$

5.
$$y = (x^2 + 3x + 4)^3$$
 6. $y = (7 - 2x^3)^{-4}$ **7.** $y = (2 - x)^4 (3 + x)^7$ **8.** $y = (x + x^2)^5 (1 + x^3)^2$

$$9. \ \ y = \frac{x+2}{(3x-4)^3}$$

10.
$$y = \frac{(1-x^2)^3}{(4+5x+6x^2)^2}$$

11.
$$y = [1 + (1 + x)^3]^4$$

12.
$$y = [x + (x + x^2)^{-3}]^{-5}$$

In Problems 13 through 20, express the derivative dy/dx in terms of x.

13.
$$y = (u + 1)^3$$
 and $u = \frac{1}{x^2}$

14.
$$y = \frac{1}{2u} - \frac{1}{3u^2}$$
 and $u = 2x + 1$

15.
$$y = (1 + u^2)^3$$
 and $u = (4x - 1)^2$

16.
$$y = u^5$$
 and $u = \frac{1}{3x - 2}$

17.
$$y = u(1 - u)^3$$
 and $u = \frac{1}{x^4}$

18.
$$y = \frac{u}{u+1}$$
 and $u = \frac{x}{x+1}$

19.
$$y = u^2(u - u^4)^3$$
 and $u = \frac{1}{x^2}$

20.
$$y = \frac{u}{(2u+1)^4}$$
 and $u = x - \frac{2}{x}$

In Problems 21 through 26, identify a function u of x and an integer $n \neq 1$ such that $f(x) = u^n$. Then compute f'(x)

21.
$$f(x) = (2x - x^2)$$

21.
$$f(x) = (2x - x^2)^3$$
 22. $f(x) = \frac{1}{2 + 5x^3}$

23.
$$f(x) = \frac{1}{(1-x^2)}$$

23.
$$f(x) = \frac{1}{(1-x^2)^4}$$
 24. $f(x) = (x^2 - 4x + 1)^3$

25.
$$f(x) = \left(\frac{x+1}{x-1}\right)^7$$

25.
$$f(x) = \left(\frac{x+1}{x-1}\right)^7$$
 26. $f(x) = \frac{(x^2+x+1)^4}{(x+1)^4}$

Differentiate the functions given in Problems 27 through 36.

27.
$$g(y) = y + (2y - 3)^5$$

28.
$$h(z) = z^2(z^2 + 4)^3$$

29.
$$F(s) = \left(s - \frac{1}{s^2}\right)^3$$

29.
$$F(s) = \left(s - \frac{1}{s^2}\right)^3$$
 30 $G(t) = \left(t^2 + 1 + \frac{1}{t}\right)^2$

31.
$$f(u) = (1 + u)^3(1 + u^2)^4$$

32.
$$g(w) = (w^2 - 3w + 4)(w + 4)^5$$

33.
$$h(v) = \left[v - \left(1 - \frac{1}{v}\right)^{-1}\right]^{-1}$$

34.
$$p(t) = \left(\frac{1}{t} + \frac{1}{t^2} + \frac{1}{t^3}\right)^{-4}$$
 35. $F(z) = \frac{1}{(3 - 4z + 5z^5)^{10}}$

36.
$$G(x) = \{1 + [x + (x^2 + x^3)^4]^5\}^6$$

In Problems 37 through 44, dy/dx can be found in two ways either using the chain rule or not using it. Use both techniques to find dy/dx, then compare the answers. (They should

37.
$$y = (x^3)^4 = x^{12}$$

37.
$$y = (x^3)^4 = x^{12}$$
 38. $y = x = \left(\frac{1}{x}\right)^{-1}$

39.
$$y = (x^2 - 1)^2 = x^4 - 2x^2 + 1$$

40.
$$y = (1-x)^3 = 1 - 3x + 3x^2 - x^3$$

41.
$$y = (x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$$

42.
$$y = (x + 1)^{-2} = \frac{1}{x^2 + 2x + 1}$$

43.
$$y = (x^2 + 1)^{-1} = \frac{1}{x^2 + 1}$$

44.
$$y = (x^2 + 1)^2 = (x^2 + 1)(x^2 + 1)$$

We shall see in Section 3.7 that $D_x[\sin x] = \cos x$ (provided that x is in radian measure). Use this fact and the chain rule to find the derivatives of the functions in Problems 45 through 48.

45.
$$f(x) = \sin(x^3)$$

$$\mathbf{46} \ g(t) = (\sin t)^3$$

47.
$$g(z) = (\sin 2z)^3$$

47.
$$g(z) = (\sin 2z)^3$$
 48. $k(u) = \sin(1 + \sin u)$ **49.** A pebble dropped into a lake creates an expanding circu-

lar ripple (Fig. 3.3.4). Suppose that the radius of the circle is increasing at the rate of 2 in./s. At what rate is its area increasing when its radius is 10 in.?

50. The area of a circle is decreasing at the rate of 2π cm²/s. At what rate is the radius of the circle decreasing when its area is 75π cm²?

51. Each edge x of a square is increasing at the rate of 2 in./s. At what rate is the area A of the square increasing when each edge is 10 in.?

52. Each edge of an equilateral triangle is increasing at 2 cm/s (Fig. 3.3.5). At what rate is the area of the triangle increasing when each edge is 10 cm?

53. A cubical block of ice is melting in such a way that each edge decreases steadily by 2 in. every hour. At what rate is its volume decreasing when each edge is 10 in. long?

Fig. 3.3.4 Expanding circular ripple in a lake (Problem 49)

Fig. 3.3.5 The triangle of Problem 52 with area $A = \frac{1}{2}xh$

- **54.** Find f'(-1), given f(y) = h(g(y)), h(2) = 55, g(-1) = 2, h'(2) = -1, and g'(-1) = 7.
- **55.** Given: G(t) = f(h(t)), h(1) = 4, f'(4) = 3, and h'(1) = -6. Find G'(1).
- **56.** Suppose that f(0) = 0 and that f'(0) = 1. Calculate the derivative of f(f(f(x))) at x = 0.
- Air is being pumped into a spherical balloon in such a way that its radius r is increasing at the rate of dr/dt = 1 cm/s. What is the time rate of increase, in cubic centimeters per second, of the balloon's volume when r = 10 cm?
- Suppose that the air is being pumped into the balloon of Problem 57 at the constant rate of 200π cm³/s. What is the time rate of increase of the radius r when r = 5 cm?
 - 59. Air is escaping from a spherical balloon at the constant rate of 300π cm³/s. What is the radius of the balloon when its radius is decreasing at the rate of 3 cm/s?
 - 60. A spherical hailstone is losing mass by melting uniformly over its surface as it falls. At a certain time, its radius is 2 cm and its volume is decreasing at the rate of 0.1 cm³/s. How fast is its radius decreasing at that time?

- **61.** A spherical snowball is melting in such a way that the rate of decrease of its volume is proportional to its surface area. At 10 A.M. its volume is 500 in.³ and at 11 A.M. its volume is 250 in.³. When does the snowball finish melting? (See Example 7.)
- **62.** A cubical block of ice with edges 20 in. long begins to melt at 8 A.M. Each edge decreases at a constant rate thereafter and each is 8 in. long at 4 P.M. What was the rate of change of the block's volume at noon?
- 63. Suppose that u is a function of v, that v is a function of w, that w is a function of x, and that all these functions are differentiable. Explain why it follows from the chain rule that

$$\frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx} .$$

3.4 DERIVATIVES OF ALGEBRAIC FUNCTIONS

We saw in Section 3.3 that the chain rule yields the differentiation formula

$$D_x u^n = n u^{n-1} \frac{du}{dx} ag{1}$$

if u = f(x) is a differentiable function and the exponent n is an integer. We shall see in Theorem 1 of this section that this **generalized power rule** holds not only when the exponent is an integer, but also when it is a rational number r = p/q (where p and q are integers and $q \neq 0$). Recall that rational powers are defined in terms of integral roots and powers as follows:

$$u^{p/q} = \sqrt[q]{u^p} = \left(\sqrt[q]{u}\right)^p.$$

We first consider the case of a rational power of the independent variable x:

$$y = x^{p/q}, (2)$$

where p and q are integers with q positive. We show independently in Section 7.4 that $g(x) = x^{p/q}$ is differentiable wherever its derivative does not involve division by zero or an even root of a negative number. Assuming this fact, let us take the qth power of each side in Eq. (2) to obtain

$$y^q = x^p \tag{3}$$

[because $(x^{p/q})^q = x^p$]. Note that Eq. (3) is an identity—the functions y^q and x^p of x are identical where defined. Therefore their derivatives with respect to x must also be identical. That is,

$$D_r(y^q) = D_r(x^p);$$

$$qy^{q-1}\frac{dy}{dx} = px^{p-1}.$$