3.3 PROBLEMS

Find dy/dx in Problems 1 through 12.

1.
$$y = (3x + 4)^5$$

2.
$$y = (2 - 5x)^3$$

3.
$$y = \frac{1}{3x - 3}$$

4.
$$y = \frac{1}{(2x+1)^3}$$

5.
$$y = (x^2 + 3x + 4)^3$$

6.
$$y = (7 - 2x^3)^{-4}$$

7.
$$y = (2-x)^4(3+x)^7$$

8.
$$y = (x + x^2)^5(1 + x^3)^2$$

9.
$$y = \frac{x+2}{(3x-4)^3}$$

1.
$$y = (3x + 4)^3$$

2. $y = (2 - 5x)^3$
3. $y = \frac{1}{3x - 2}$
4. $y = \frac{1}{(2x + 1)^3}$
5. $y = (x^2 + 3x + 4)^3$
6. $y = (7 - 2x^3)^{-4}$
7. $y = (2 - x)^4(3 + x)^7$
8. $y = (x + x^2)^5(1 + x^3)^2$
9. $y = \frac{x + 2}{(3x - 4)^3}$
10. $y = \frac{(1 - x^2)^3}{(4 + 5x + 6x^2)^2}$

11.
$$v = [1 + (1 + x)^3]^4$$

11.
$$y = [1 + (1 + x)^3]^4$$
 12. $y = [x + (x + x^2)^{-3}]^{-5}$

In Problems 13 through 20, express the derivative dy/dx in terms of x.

13.
$$y = (u + 1)^3$$
 and $u = \frac{1}{v^2}$

14.
$$y = \frac{1}{2u} - \frac{1}{3u^2}$$
 and $u = 2x + 1$

15.
$$y = (1 + u^2)^3$$
 and $u = (4x - 1)^2$

16.
$$y = u^5$$
 and $u = \frac{1}{3x - 2}$

17.
$$y = u(1-u)^3$$
 and $u = \frac{1}{x^4}$

18.
$$y = \frac{u}{u+1}$$
 and $u = \frac{x}{x+1}$

19.
$$y = u^2(u - u^4)^3$$
 and $u = \frac{1}{x^2}$

20.
$$y = \frac{u}{(2u+1)^4}$$
 and $u = x - \frac{2}{x}$

In Problems 21 through 26, identify a function u of x and an integer $n \neq 1$ such that $f(x) = u^n$. Then compute f'(x).

21.
$$f(x) = (2x - x^2)^3$$

21.
$$f(x) = (2x - x^2)^3$$
 22. $f(x) = \frac{1}{2 + 5x^3}$

23.
$$f(x) = \frac{1}{(1-x^2)^4}$$

24.
$$f(x) = (x^2 - 4x + 1)^3$$

$$25. \ f(x) = \left(\frac{x+1}{x-1}\right)$$

23.
$$f(x) = \frac{1}{(1-x^2)^4}$$
 24. $f(x) = (x^2 - 4x + 1)^3$ 25. $f(x) = \left(\frac{x+1}{x-1}\right)^7$ 26. $f(x) = \frac{(x^2 + x + 1)^4}{(x+1)^4}$

Differentiate the functions given in Problems 27 through 36.

27.
$$g(y) = y + (2y - 3)^5$$
 28. $h(z) = z^2(z^2 + 4)^3$

28.
$$h(z) = z^2(z^2 + 4)^2$$

29.
$$F(s) = \left(s - \frac{1}{s^2}\right)$$

29.
$$F(s) = \left(s - \frac{1}{s^2}\right)^3$$
 30. $G(t) = \left(t^2 + 1 + \frac{1}{t}\right)^2$

31.
$$f(u) = (1 + u)^3(1 + u^2)^4$$

32.
$$g(w) = (w^2 - 3w + 4)(w + 4)^5$$

33.
$$h(v) = \left[v - \left(1 - \frac{1}{v}\right)^{-1}\right]^{-1}$$

34.
$$p(t) = \left(\frac{1}{t} + \frac{1}{t^2} + \frac{1}{t^3}\right)^{-4}$$
 35. $F(z) = \frac{1}{(3 - 4z + 5z^5)^{10}}$

36.
$$G(x) = \{1 + [x + (x^2 + x^3)^4]^5\}^6$$

In Problems 37 through 44, dy/dx can be found in two ways either using the chain rule or not using it. Use both techniques to find dy/dx, then compare the answers. (They should

37.
$$y = (x^3)^4 = x^{12}$$

37.
$$y = (x^3)^4 = x^{12}$$
 38. $y = x = \left(\frac{1}{x}\right)^{-1}$

39.
$$y = (x^2 - 1)^2 = x^4 - 2x^2 + 1$$

40.
$$y = (1-x)^3 = 1 - 3x + 3x^2 - x^3$$

41.
$$y = (x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$$

42.
$$y = (x + 1)^{-2} = \frac{1}{x^2 + 2x + 1}$$

43.
$$y = (x^2 + 1)^{-1} = \frac{1}{x^2 + 1}$$

44.
$$y = (x^2 + 1)^2 = (x^2 + 1)(x^2 + 1)$$

We shall see in Section 3.7 that $D_x[\sin x] = \cos x$ (provided that x is in radian measure). Use this fact and the chain rule to find the derivatives of the functions in Problems 45 through 48.

45.
$$f(x) = \sin(x^3)$$

$$46 \qquad g(t) = (\sin t)$$

47
$$o(z) = (\sin 2z)^2$$

$$48. k(u) = \sin(1 + \sin u)$$

45. $f(x) = \sin(x^3)$ **46.** $g(t) = (\sin t)^3$ **47.** $g(z) = (\sin 2z)^3$ **48.** $k(u) = \sin(1 + \sin u)$ **49.** A pebble dropped into a lake creates an expanding circular ripple (Fig. 3.3.4). Suppose that the radius of the circle is increasing at the rate of 2 in./s. At what rate is its area increasing when its radius is 10 in.?

50. The area of a circle is decreasing at the rate of 2π cm²/s. At what rate is the radius of the circle decreasing when its area is 75π cm²?

51. Each edge x of a square is increasing at the rate of 2 in./s. At what rate is the area A of the square increasing when each edge is 10 in.?

52. Each edge of an equilateral triangle is increasing at 2 cm/s (Fig. 3.3.5). At what rate is the area of the triangle increasing when each edge is 10 cm?

53. A cubical block of ice is melting in such a way that each edge decreases steadily by 2 in. every hour. At what rate is its volume decreasing when each edge is 10 in. long?

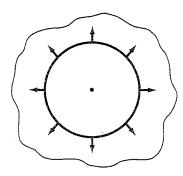


Fig. 3.3.4 Expanding circular ripple in a lake (Problem 49)

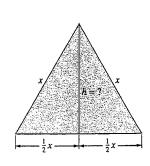


Fig. 3.3.5 The triangle of Problem 52 with area $A = \frac{1}{2}xh$

- **54.** Find f'(-1), given f(y) = h(g(y)), h(2) = 55, g(-1) = 2, h'(2) = -1, and g'(-1) = 7.
- **55.** Given: G(t) = f(h(t)), h(1) = 4, f'(4) = 3, and h'(1) = -6. Find G'(1).
- 56. Suppose that f(0) = 0 and that f'(0) = 1. Calculate the derivative of f(f(f(x))) at x = 0.
- Air is being pumped into a spherical balloon in such a way that its radius r is increasing at the rate of dr/dt = 1 cm/s. What is the time rate of increase, in cubic centimeters per second, of the balloon's volume when r = 10 cm?
- Suppose that the air is being pumped into the balloon of Problem 57 at the constant rate of 200π cm³/s. What is the time rate of increase of the radius r when r = 5 cm?
 - 59. Air is escaping from a spherical balloon at the constant rate of 300π cm³/s. What is the radius of the balloon when its radius is decreasing at the rate of 3 cm/s?
 - 60. A spherical hailstone is losing mass by melting uniformly over its surface as it falls. At a certain time, its radius is 2 cm and its volume is decreasing at the rate of 0.1 cm³/s. How fast is its radius decreasing at that time?

- 61. A spherical snowball is melting in such a way that the rate of decrease of its volume is proportional to its surface area. At 10 A.M. its volume is 500 in.³ and at 11 A.M. its volume is 250 in.³. When does the snowball finish melting? (See Example 7.)
- 62. A cubical block of ice with edges 20 in. long begins to melt at 8 A.M. Each edge decreases at a constant rate thereafter and each is 8 in. long at 4 P.M. What was the rate of change of the block's volume at noon?
- 63. Suppose that u is a function of v, that v is a function of w, that w is a function of x, and that all these functions are differentiable. Explain why it follows from the chain rule that

$$\frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx} .$$

64. Let f be a differentiable function such that f(1) = 1. If $F(x) = f(x^n)$ and $G(x) = [f(x)]^n$ (where n is a fixed integer), show that F(1) = G(1) and that F'(1) = G'(1).

3.4 DERIVATIVES OF ALGEBRAIC FUNCTIONS

We saw in Section 3.3 that the chain rule yields the differentiation formula

$$D_x u^n = n u^{n-1} \frac{du}{dx} \tag{1}$$

if u = f(x) is a differentiable function and the exponent n is an integer. We shall see in Theorem 1 of this section that this **generalized power rule** holds not only when the exponent is an integer, but also when it is a rational number r = p/q (where p and q are integers and $q \neq 0$). Recall that rational powers are defined in terms of integral roots and powers as follows:

$$u^{p/q} = \sqrt[q]{u^p} = \left(\sqrt[q]{u}\right)^p.$$

We first consider the case of a rational power of the independent variable x:

$$y = x^{p/q}, (2)$$

where p and q are integers with q positive. We show independently in Section 7.4 that $g(x) = x^{p/q}$ is differentiable wherever its derivative does not involve division by zero or an even root of a negative number. Assuming this fact, let us take the qth power of each side in Eq. (2) to obtain

$$y^q = x^p \tag{3}$$

[because $(x^{p/q})^q = x^p$]. Note that Eq. (3) is an identity—the functions y^q and x^p of x are identical where defined. Therefore their derivatives with respect to x must also be identical. That is,

$$D_x(y^q) = D_x(x^p);$$

$$qy^{q-1}\frac{dy}{dx}=px^{p-1}.$$

+62 P. 139.

Derivatives of Algebraic Functions SECTION 3.4 139

38.
$$h(z) = (z-1)^4(z+1)^6$$

39.
$$f(x) = \frac{(2x+1)^{1/2}}{(3x+4)^{1/3}}$$

40.
$$f(x) = (1 - 3x^4)^5(4 - x)^{1/3}$$

40.
$$f(x) = (1 - 3x^4)^5 (4 - x)^{1/3}$$

41. $h(y) = \frac{\sqrt{1 + y} + \sqrt{1 - y}}{\sqrt[3]{y^5}}$

$$\mathbf{42} f(x) = \sqrt{1 - \sqrt[3]{x}}$$

43.
$$g(t) = \sqrt{t + \sqrt{t + \sqrt{t}}}$$

42)
$$f(x) = \sqrt{1 - \sqrt[4]{x}}$$

43. $g(t) = \sqrt{t + \sqrt{t + \sqrt{t}}}$ **44.** $f(x) = x^3 \sqrt{1 - \frac{1}{x^2 + 1}}$

For each curve given in Problems 45 through 50, find all points on the graph where the tangent line is either horizontal or vertical.

45.
$$y = x^{2/3}$$

46.
$$y = x\sqrt{4 - x^2}$$

47.
$$y = x^{1/2} - x^{3/2}$$

48.
$$y = \frac{1}{\sqrt{9-x^2}}$$

49.
$$y = \frac{x}{\sqrt{1-x^2}}$$

50.
$$y = \sqrt{(1-x^2)(4-x^2)}$$

In Problems 51 through 56, first write an equation of the line tangent to the given curve y = f(x) at the indicated point P. Then illustrate your result with a graphing calculator or computer by graphing both the curve and the tangent line on the same screen.

51.
$$y = 2\sqrt{x}$$
, at the point P where $x = 4$

52.
$$y = 3\sqrt[3]{x}$$
, at the point P where $x = 8$

53.
$$y = 3\sqrt[3]{x^2}$$
, at the point *P* where $x = -1$
54. $y = 2\sqrt{1 - x}$, at the point *P* where $x = \frac{3}{4}$

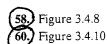
$$55. y = 5 \sqrt{x}, \text{ at the point? Where } x$$

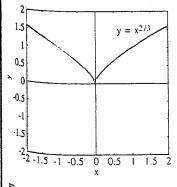
55.
$$y = x\sqrt{4-x}$$
, at the point P where $x = 0$

56.
$$y = (1 - x)\sqrt{x}$$
, at the point P where $x = 4$

In Problems 57 through 62 (Figs. 3.4.7 through 3.4.12), match the graph y = f(x) of a function with the graph y = f'(x) of its derivative among those shown in Figs. 3.4.13(a) through

3.4.13(f).





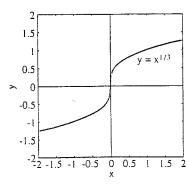
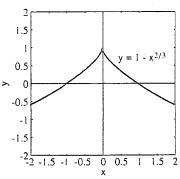


Fig. 3.4.7
$$y = x^{2/3}$$
 (Problem 57) Fig. 3.4.8 $y = x^{1/3}$ (Problem 58)

(62) Figure 3.4.12

- **63.** The period of oscillation P (in seconds) of a simple pendulum of length L (in feet) is given by $P = 2\pi \sqrt{L/g}$. where $g = 32 \text{ ft/s}^2$. Find the rate of change of P with respect to L when P = 2.
- **64.** Find the rate of change of the volume $V = \frac{4}{3} \pi r^3$ of a sphere of radius r with respect to its surface area $A = 4\pi r^2$ when r = 10.



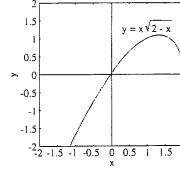
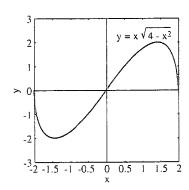


Fig. 3.4.9 $y = 1 - x^{2/3}$ (Problem 59)

Fig. 3.4.10 $y = x\sqrt{2-x}$ (Problem 60)



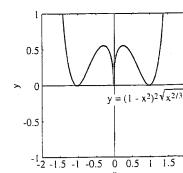
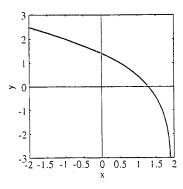


Fig. 3.4.11 $y = x\sqrt{4 - x^2}$ (Problem 61)

Fig. 3.4.12 $y = (1 - x^2)^2 \sqrt{x^{2/3}}$ (Problem 62)



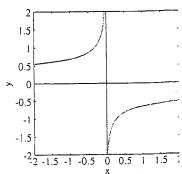


Fig. 3.4.13 (a)

Fig. 3.4.13 (b)

Fig. 7.2.12 Data for Example 9

 $\ln T$ against $\ln a$, it is immediately apparent that the resulting points lie on a straight line of slope $m = \frac{3}{2}$. Hence T and a satisfy an equation of the form $T = ka^{3/2}$, so

$$T^2=Ca^3.$$

This means that the square of the period T is proportional to the cube of the major semiaxis a. This is Kepler's third law of planetary motion, which Johannes Kepler (1571-1630) discovered empirically in 1619.

7.2 PROBLEMS

Differentiate the functions given in Problems 1 through 18.

1.
$$f(x) = \ln(3x - 1)$$

2.
$$f(x) = \ln(4 - x^2)$$

3.
$$f(x) = \ln \sqrt{1 + 2x}$$

4.
$$f(x) = \ln[(1+x)^2]$$

3.
$$f(x) = \ln \sqrt{1 + 2x}$$

5. $f(x) = \ln \sqrt[3]{x^3 - x}$

$$6. f(x) = \ln(\sin^2 x)$$

7.
$$f(x) = \cos(\ln x)$$

8.
$$f(x) = (\ln x)^3$$

$$9. \ f(x) = \frac{1}{\ln x}$$

$$10. f(x) = \ln(\ln x)$$

11.
$$f(x) = \ln(x\sqrt{x^2+1})$$

12.
$$g(t) = t^{3/2} \ln(t+1)$$

$$13. \ f(x) = \ln(\cos x)$$

14.
$$f(x) = \ln(2\sin x)$$

15.
$$f(t) = t^2 \ln(\cos t)$$

16.
$$f(x) = \sin(\ln 2x)$$

17.
$$g(t) = t(\ln t)^2$$

18.
$$g(t) = \sqrt{t} [\cos(\ln t)]^2$$

In Problems 19 through 28, apply laws of logarithms to simplify the given function; then write its derivative.

19.
$$f(x) = \ln[(2x+1)^3(x^2-4)^4]$$

19.
$$f(x) = \ln{(2x + 1)}(x + 1)$$

20. $f(x) = \ln{\sqrt{\frac{1 - x}{1 + x}}}$
21. $f(x) = \ln{\sqrt{\frac{4 - x^2}{9 + x^2}}}$
22. $f(x) = \ln{\frac{\sqrt{4x - 7}}{(3x - 2)^3}}$
23. $f(x) = \ln{\frac{x + 1}{x - 1}}$

21.
$$f(x) = \ln \sqrt{\frac{4 - x^2}{9 + x^2}}$$

22.
$$f(x) = \ln \frac{\sqrt{4x - 7}}{(3x - 2)^3}$$

23.
$$f(x) = \ln \frac{x+1}{x-1}$$

24.
$$f(x) = x^2 \ln \frac{1}{2x+1}$$
 25. $g(t) = \ln \frac{t^2}{t^2+1}$

25.
$$g(t) = \ln \frac{t^2}{t^2 + 1}$$

26.
$$f(x) = \ln \frac{\sqrt{x+1}}{(x-1)^3}$$
 27. $f(x) = \ln \frac{\sin x}{x}$

$$27. \quad f(x) = \ln \frac{\sin x}{x}$$

$$(28.) f(x) = \ln \frac{\sin x}{\cos x}$$

In Problems 29 through 32, find dy/dx by implicit differentiation.

29.
$$y = x \ln y$$

30.
$$y = (\ln x)(\ln y)$$

$$31. xy = \ln(\sin y)$$

32.
$$xy + x^2(\ln y)^2 = 4$$

Evaluate the indefinite integrals in Problems 33 through 50.

33.
$$\int \frac{dx}{2x-1}$$

34.
$$\int \frac{dx}{3x+5}$$

$$35. \int \frac{x}{1+3x^2} dx$$

$$36. \int \frac{x^2}{4-x^3} dx$$

35.
$$\int \frac{x}{1+3x^2} dx$$
36.
$$\int \frac{x^2}{4-x^3} dx$$
37.
$$\int \frac{x+1}{2x^2+4x+1} dx$$
38.
$$\int \frac{\cos x}{1+\sin x} dx$$

38.
$$\int \frac{\cos x}{1 + \sin x} dx$$

39.
$$\int \frac{1}{x} (\ln x)^2 dx$$
 40. $\int \frac{1}{x \ln x} dx$

$$40. \int \frac{1}{x \ln x} dx$$

$$41. \int \frac{1}{x+1} dx$$

$$2x+1$$

41.
$$\int \frac{1}{x+1} dx$$
 42. $\int \frac{x}{1-x^2} dx$

43.
$$\int \frac{2x+1}{x^2+x+1} dx$$
44.
$$\int \frac{x+1}{x^2+2x+3} dx$$
45.
$$\int \frac{\ln x}{x} dx$$
46.
$$\int \frac{\ln(x^3)}{x} dx$$

44.
$$\int \frac{x^2 + 2x + 1}{x^2 + 2x} dx$$

47.
$$\int \frac{\sin 2x}{1 - \cos 2x} dx$$
 48.
$$\int \frac{dx}{x(\ln x)^2}$$

48.
$$\int \frac{dx}{x(\ln x)^2}$$

49.
$$\int \frac{x^2 - 2x}{x^3 - 3x^2 + 1} dx$$

50.
$$\int \frac{dx}{\sqrt{x}(1+\sqrt{x})}$$
 (Suggestion: Let $y=1+\sqrt{x}$.)

Apply Eq. (13) to evaluate the limits in Problems 51 through 50

$$\int_{x\to\infty} \frac{\ln \sqrt{x}}{x}$$

$$\sum_{x\to\infty} \frac{\ln(x^3)}{r^2}$$

(53)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$
 (Suggestion: Substitute $x = u^2$.)