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By using a graphics calculator or computer with graphics capabilities, you can
verify that the graph of the function f of Example 6 is that shown in Fig. 3.5.11. But
in the usual case of a continuous function that has only finitely many critical points
in a given closed interval, the closed-interval maximum-minimum method suffices to
determine its maximum and minimum values without requiring any detailed knowl-
edge of the graph of the function.

3.5 PROBLEMS

In Problems 1 through 10, state whether the given function
attains a maximum value or a minimum value (or both) on the
given interval. (Suggestion: Begin by sketching a graph of the
function.)

L fx)=1-x [-1,1)
3. f(x) =kl (-1,1)
5 flx)=1]c-2]; (1,4]

2 flx)=2x+1; [-1,1)

4 flx) = \f—x (.1]

6 flx)=5-x% [-1,2)

T flx)=x*+1; [-1,1]

8. f(x)=x21l: (=, )
1

9. flx) = -0 (2,3]

10. f(x) (0,1)

_ 1
x(1 -
In Problems 11 through 40, find the maximum and minimum

values attained by the given function on the indicated closed
interval.

1L f(x) =3x-2; [-2,3]
12. f(x)=4-3x [-1,5]
13. hlx) =4 —x% [1,3]
14. f(x) =x*+3; [0,5]

15. g(x) = (x - 1)% [-1,4]
16. h(x) = x>+ 4x + 7; [-3,0]
i7. jlx) =x" =3 |—44]

@g(x) =20 - 9x? + 12x; [0,4]
L
19. h(x) = x + v [1,4]

16_

20. f(x) =x*+ [1,3]

2L f(x) =3 - ?_r: [-1,1]
2 f(x)=x*-4x+3: [0,2]

23, f(x) =5-12¢ — 9% [-1,1]

24, f(x) = —4x+ 7 [0,2]

25, fx) =x*-3x*-9x +5; [~2,4]
26 f(x)=x*+x [-1,2]

27. f(x) =3x° — 5¢% [-2,2]

28. f(x) =|2x—3]; [1,2]

29. f(x) =5+ [7-3x|; [1,5]
30. flx)=|x+1+x—1]; [-22]
3L f(x) = 50x% — 105x* + 72x; [0, 1]

32, flx) = 2¢ + -1-; [1,4]

2x
3. f(x) = x—{—l; [0, 3]
M. fl)= 5= [0.3]
3 ) = g [-2.5]
36. flx) =2-Vx [-1.8
37. flx) =xV1 -2 [-1,1]

38. f(x) =xV4a-x; [0,2]

39. f(x) = x(2 — x)'%; [1,3]

40. fl(x) = x'2 = *2 o,4]

41. Suppose that f(x) = Ax + B is a linear function and that
A # 0. Explain why the maximum and minimum values

of f on a closed interval [a, b] must occur at the endpoints
of the interval.

42. Suppose that f is continuous on [a, b] and differentiable on
(a, b) and that f'(x) is never zero at any point of (a, b).
Explain why the maximum and minimum values of f must
occur at the endpoints of the interval [a, b).

43. Explain why every real number is a critical point of the
greatest integer function f(x) = |x].

44. Prove that every quadratic function

fX) =ax®* + bx+c (a#0)

has exactly one critical point on the real line.
45. Explain why the cubic polynomial function

flx) =ax* + bx> +ex +d  (a #0)

can have either two, one, or no critical points on the real line.
Produce examples that illustrate each of the three cases.

46. Define f(x) to be the distance from x to the nearest integer.
What are the critical points of f?

In Problems 47 through 52, match the given graph of the func-
tion with the graph of its derivative f’ from those in Fig. 3.5.12,
parts (a) through (f).
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3.6 PROBLEMS

The Derivative

We square both sides, clear the equation of fractions, and simplify. The result is

2?3600 + (200 — x)?] = (200 — x)3(8100 + x2);
3600x* = 8100(200 — x)% (Why?)
60x = 90(200 — x);
150x = 18000;
x = 120.

Thus the cow should proceed directly to the point P loczted 120 ft along the

water trough. E

These examples indicate that the closed-interval maximum-minimum method is
applicable to a wide range of problems. Indeed. annlied ontimization probiems that
scem as different as light rays and cows may have essentially identical mathematical
models. This is only one illustration of the power of generality that calculus exploits
so effectively.

1. Find two positive real numbers x and y such that their sum
is 50 and their product is as large as possible.

2. / Find the maximum possible area of a rectangle of perime-

ter 200 m.

3. A rectangle with sides parallel to the coordinate axes has

is 300 in.* (Fig. 3.6.16). What is the maximum possible
volume of such a box?

6. If x is in the interval [0, 1], then x — x? is not negative.
What is the maximum value that x — x? can have on that
interval? In other words, what is the greatest amount by

one vertex at the origin, one on the positive x-axis, one on
the positive y-axis, and its fourth vertex in the first quad-
rant on the line with equation 2x + y = 100 (Fig. 3.6.15).
What is the maximum possible area of such a rectangle?

4. A farmer has 600 m of fencing with which to enclose a rec-

tangular pen adjacent to a long existing wall. He will use
the wall for one side of the pen and the available fencing
for the remaining three sides. What is the maximum area
that can be enclosed in this way?

5. Arectangular box has a square base with edges at least
Lin.long. It has no top, and the total area of its five sides

which a real number can exceed its square?

7. The sum of two positive numbers is 48. What is the small-

est possible value of the sum of their squares?

8. A rectangle of fixed perimeter 36 is rotated around one of

its sides, thus sweeping otit a figure in the shape of a right
circular cylinder (Fig. 3.6.17). What is the maximum possi-
ble volume of that cylinder?

Fig. 3.6.17 The
rectangle and cylin-
der of Problem &

9. The sum of two nonnegative real numbers is 10. Find the

Fig. 3.6.15 The rectangle of

Problem 3

____ minimum possible value of the sum of their cubes.

@ Suppose that the strength of a rectangular beam is pro-
portional to the product of the width and the square of the
height of its cross section. What shape beam should be cut
from a cylindrical log of radius r to achieve the greatest
possible strength?

11. A farmer has 600 yd of fencing with which to build a rec-

Fig. 3.6.16 A box
with square base
and volume V = Xy
(Problems 5, 17,
and 20) tangular corral. Some of the fencing will be used to con-




12.

13.

14.

15.
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struct two internal divider fences, both parallel to the
same two sides of the corral (Fig. 3.6.18). What is the max-
imum possible total area of such a corral?

| |
I

X 1

Fig. 3.6.18 The divided corral of Problem 11

Find the maximum possibie voiume of a nght circular
cylinder if its total surface area—including both circular
ends—is 1507.

Find the maximum possible area of a rectangle with diag-
onals of length 16.

A rectangle has a line of fixed length L reaching from one
vertex to the midpoint of one of the far sides (Fig. 3.6.19).
What is the maximum possible area of such a rectangle?

t x !
Fig. 3.6.19 The rectangle of Problem 14
The volume V (in cubic centimeters) of 1 kg of water at

temperature T between 0°C and 30°C is very closely
approximated by

V = 999.87 — (0.06426)T + (0.0085043)T2 — (0.0000679) 7>

i6.

17.

18.

At what temperature does water have its maximum dencitu?

What is the maximum possible area of a rectangle with a
base that lies on the x-axis and with two upper vertices that
lie on the graph of the equation y = 4 — x* (Fig. 3.6.20)?
A rectangular box has a square base with edges at least
1 cm long. Its total surface area is 600 cm®. What is the
largest possible volume that such a box can have?

‘You must make a cylindrical can with a bottom but no top
from 3007 in* of sheet metal. No sheet metal will be
wasted; you are allowed to order a circular piece of any size
for its base and any appropriate rectangular piece to make
into its curved side as long as the given conditions are met.
What is the greatest possible volume of such a can?

Three large squares of tin, each with edges 1 m long, have
four small, equal squares cut from their corners. All twelve
resulting small squares are to be the same size (Fig. 3.6.21).
The three large cross-shaped pieces are then folded and

Fig. 3.6.21 One of the

three 1-m squares of
Problem 16 Problem 19

Fig. 3.6.20 The rectangle of

welded to make boxes with no tops, and the twelve small
squares are used to make two small cubes How should this
be done to maximize the total volume of all five boxes?

20. Suppose that you are to make a rectangular box with o
square base from two different materials. The material for
the top and four sides of the box costs $1/ft?; the material
for the base costs $2/ft*. Find the dimensions of the box of
greatest possible volume if you are allowed to spend $144
for the material to make it.

21. A piece of wire 80 in. long is cut into at most two pieces.
Each piece is bent into the shape of a square. How should
this be done to minimize the sum of the area(s) of the
square(s)? to maximize it?

@ A wire of length 100 c¢m is cut into two pieces. One piece
is bent into a circle, the other into a square. Where should
the cut be made to maximize the sum of the areas of the
square and the circle? to minimize that sum?

23. A farmer has 600 m of fencing with which she plans to
enclose a rectangular pasture adjacent to a long existing
wall. She plans to build one fence parallel to the wall, two
to form the ends of the enclosure, and a fourth (parallel to
the ends of the enclosure) to divide it equally. What is the
maximum area that can be enclosed?

24. A zookeeper needs to add a rectangular outdoor pen to an
animal house with a corner notch, as shown in Fig. 3.6.22. If

Animal house

10m |
e

Sm II

New fence |

Fig. 3.6.22 The rectangular
pen of Problem 24
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points in Fig. 4.7.11. We could zoom in closer to each of these solutions, or we could
use a calculator or computer | SOLVE |command to get the approximations
~5.4302.0.3152,0.6503, and 1.3937.The larger view shown in Fig. 4.7.17 convinces us
that we've found all the inflection points of y = f(x). In particular, we see that
v = f(x) is concave upward to the right of the inflection point x = —5.4303, where
the denominator in Eq. (10) is negative (why?), and is concave downward just to its
left (consistent with what we see in Fig. 4.7.15).

This thorough analysis of the graph of the function fof Eq. (8) involves a certain
amount of manual labor—just to calculate and simplify the derivatives in Egs. (9)
and (10) unless we use a computer algebra system for this task—but would be very

challenging without the use of a graphing calculator or computer. - A
4.7 PROBLEMS
Investigate the limits in Problems 1 through 16. as well as the behavior of the graph for |x| large and for x near
X x4+ any discontinuities of the function.
1. Jifg = 0 2. lim T - 3
x—sdm ¥ 4 -2 X° — . 2 )
L $ 29, f(x)=—— 30, )f(x) = - ——
2ip . oy X =3 =k
3. lim =—= 4 lmg T 3 4
X= X — x— & 2 -
3. f(x) = —— 2. flx) =
8 4 - : (x + 2) : &
5. lim = _— 6. lim —— 1 gl
ek ' B, flx) = =——=3 4. flx) ==—
tr2x+1 : S5x° —Zx+1 (2r = 3) ' -1
7. lim EEV 8. lim T+ axi—2 . 2 pa:
x— X X X~ + 4x & 35, f[\‘] = __‘_ ] 36. f{‘_’} £ 2...
_ I + 1 x°+1 x* 1]
9. lim —'_——_’ 10. III’I‘I' e ; 1 v
ANE =50 A e 1A 3. fx) = = 8. f(x)= "=
8 - Vx 2x? - 17 o Wy
. lim —— 2. h —_— . 1 22+ 1
L 2. B 3. f(x) = 5———— 40, f(x) = >—
ot S x5 x—6 xt =2
4x2 —x Vx?—8x+ 1
: e : S el e 1 oo 1
B S . R A fle) =x+ @"("" TEra
15. lim (Vai+2r—-x) 16. lim (2x - Vax? = 5x g2 P B
aoas 4 fob—m ‘ 43. fly) = —— 4. flx) = ———F——
PR e ) = =T 5+
Apply vour knowledge of limits and asymptotes to match 1 1
each function in Problems 17 through 28 with its graph-with- 45, f(x) = G-1¢ 46. f(x) = = —3
asymptotes in one of the twelve parts of Fig. 4.7.18. - s
: 1
s oy A i ek o 7. flx) = —— 8. f(x) =
T 18. T (: + 1)
1 20. flx) = 1 4. flx) = —,-—l 50. ) f(x) = ,_.__1. I—
B, =1 0. f&) == : -x-2 ' (x - )(x + 1)?
. 1 1 s Hy =X 4 S
2L fix)= 35— 22. flx)=7"7 Bl = ¢ 5 R 1
xa=] Rl *
= " - . X } — 4 - " _tw' + 1
8. f(x) = 35— 24 flx) = 53, fla) ===~ 4. fx) =75
S =] : S
25. flx) = X 26. f(x) = 2-1" In Pr(?ble:ns 55 through 60, you can detcrmme_ by inspection
x—1 x°—1 the x-intercepts as well as the vertical and horizontal asymp-
- x2 _ ¥3 totes of the curve y = f(x). First sketch the graph by hand,
27. f(x) = o 28. f(x) = 2 -1 using this information, and without calculating any deriva-
) tives. Then use a calculator or computer to locate accurately
Sketch by hand the graph of each function in Problems 29 the critical and inflection points of f(x). Finally, use a calcula-
through 54. Identify and label all extrema, inflection points, tor or computer to produce graphs that display the major fea-

intercepts, and asymptotes. Show the concave structure clearly tures of the curve.




34, lim xlInx (Suggestion: Substitute x = 1/u.)
t—()* i

= . (Inx)?
lim Vxlnx 56. lim __r_)

r—0* r—®

Use the method of Example 4 to deduce that

tn
tn

tn
-1
.

cotxdx = In|sinx] + C.

Find a formula for /'”(x), given f(x) = Inx (n denotes a
positive integer).

The heart rate R (in beats per minute) and weight W (in
pounds) of various mammals were measured, with the
results shown in Fig. 7.2.13. Use the method of Example 9
to find a relation between the two of the form R = kW™

un
o

1
=

b

W 2 127 246 | 975

U
o)
=1

88

|
|

R | 131 | 103
't

Fig. 7.2.13 Data for Problem 59

60. During the adiabatic expansion of a certain diatomic gas,
its volume V (in liters) and pressure p (in atmospheres)
were measured, with the results shown in Fig. 7.2.14. Use
the method of Example 9 to find a relation between V and

s

p of the form p = kV

v | 146 | 250

[95)
i

wn
L |
[
~
)
=

p !I 28.3 133 | 83 42 3.0

Fig. 7.2.14 Data for Problem 60

In Problems 61 and 62, graph (on a single calculator or com-
puter screen) the functions on either side of the given equa-
tion to locate its single positive solution. Then determine
wwiieically the value of this sclution accitrate to three ded

mal places.

1
6l. Inx =5 — x 62. Inx =—
X

In Problems 63 through 66, graph (on a single calculator or
computer screen) the functions on both sides of the given
equation to determine how many positive solutions the equa-
tion has. Then determine numerically the value of each solu-
tion accurate to three decimal places.

63. 2lnx=x -2 64. 41lnx = (x — 3)°

65. 2Inx = 3sin2x 66. 2Inx = 5cosx

67. Find graphically the coordinates (accurate to three deci-
mal places) of the intersection point of the graphs y = Inx
and y = x'/1 shown in Fig. 7.2.7.

68. Determine a viewing rectangle that reveals the second
intersection point (with x > 10) of the graphs y = Inx
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and y = x'/'°. Then determine graphically the first three
digits of the larger solution x of the equation Inx = 1110
(thus writing this solution in the form p.gr X 10%).

69. Approximate numerically the area of the region that iies
beneath the curve y = 5lnx — 2x + 3 and above the x-
axis. You will first need to estimate graphically the x-inter-
cepts of this curve, then integrate numerically (perhaps
using the numerical integration facility of your calculator
or computer).

70. Approximate numerically the area of the region bounded
by the curves y = 10 Inx and y = (x — 5). You will first
need to estimate graphically the x-coordinates of the
intersection points of the two curves, then integrate
numerically (perhaps using the numerical integration
facility of your calculator or computer).

71. Substitute y = x” and then apply Eq. (13) to show that

. Inx
lim -

1= xP

=0 if0t<p<l

72. Deduce from the result of Problem 71 that

tim B2 _ o it k> 0.
L ¢

73. Substitute y = 1/x and then apply Eq. (13) to show that

lim x*lnx =0 if k> 0.

x=3l)*

Use the limits in Problems 71 through 73 to help you sketch
the graphs, for x > 0, of the functions given in Problems 74
through 77.

74. y = xlInx 75. y = x%Inx
- Inx
76. )y = VxInx 77. y = L
- Vx

78. Problem 26 of Section 5.9 asks you to show by numerical
integration that

5 -

Max [P
), x T X

Explain carefully why this result proves that 2.7 < e < 2.7.
79. If n moles of an ideal gas expand at constant temperature
7, then the pressure and volume satisfy the ideal-gas
equation pV = nRT (n and R are constants). With the aid
of Problem 22 in Section 6.6, show that the work W done
by the gas in expanding from volume V| to volume V, is

v,
W =nRTIn —.
n Ny

1

80. “Gabriel’s horn” is obtained by revolving around the x-
axis the curve y = 1/x,x = 1 (Fig. 7.2.15). Let A, denote
its surface area from x =1 to x=»5. Show that
A, =27 Inb, so—as a consequence

A, — +=o as
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7.3 PROBLEMS

Exponential and Logarithmic Functions

Differentiate the functions in Problems 1 through 30.

1L fla)=e™ 2. flx) =e*"!
3. flx) =e* = exp(x?) 4 flx)=¢€"*
5. f(x) = e/ 6. f(x) = x%*
7. glt) = eV 8. g(r) = (e¥ + &Y
9. g(t) = (12 = 1)e 10. g(c) = Ve' — e
11 g(r) = e 12. f(x) =
13. f(x) = cos(l — ™) 14. f(x) = sin*(e™)
15. f(x) =In{x + &™) 16. f(x) = e* cos2x
17. f(x) = e sin3x 18. e(r) = In(re”)
i9. glr) = 3(0" - In1)® 20. glr) = sin(e’) cos(e ')
a1, fla)m 2t 2 g itE

e™ L=
23. glr) = 1 _f ‘ 24. f(x) = e '

Jo=iy -

25, flx) = e‘ 26. flx) = e¥* + ¢™V3
27. f(x) 28. f(x) = Ve + ¢ &
29, f(x) = 5111( i) 30. f(x) = cos(e* + e7*)

In Problems 31 through 35, find dy/dx by implicit differentiation.
3. xe’ =y 32. sin(e") = x
33, e* + ¢ = M. x = ye’

35. ¢* 7 =xy

.\
1l

Find the antiderivatives indicated in Problems 36 through 53.

1-2

36. ":’ dx I e =idx

38. J <2 dx 39. [
4u, I ¥ ;—=\‘ A1, l- o 2 d',._.
1+
42. ‘ COS ‘ esinT fy 43. !’(5in 2_1.)(_)1—<:u5.1.\ dx
x + {.:A
44, Iu‘ ) dx 45, J =X
7 4
46. F 47. “rr 1 g
48. I.x-'c:'-""d.x- 49. J >
J VX
50. { aay> 51. [—" dx
J J 1+
52. I explx + ¢*) dx 53. J Vi exp( =V ) dx

Apply Eq. (18) to evaluate (in terms of the exponential func-
tion) the limits in Problems 54 through 58.

f 1 n \n
s4. lim (1 -+ 55. lim (1 + 2)

n—se | n n—se n)

f Z X"
56. lim (1+= ] 57. lim (1 + h)'*
-\ 3n h—0

58. lim (1 + 2h)""  (Suggestion: Substitute k = 2h.)

h—0

Evaluate the limits in Problems 59 through 62 by applying the
fact that

Iim x "¢ =10
Firye
.. e’ .t
59. lim 60. lim —
T —ai ¢ Y —su \ X
- ¥ (4 I - ‘- 7
Vi ditid L% P liitr L ¢
Ade X A=

In Problems 63 through 65.sketch the graph of the given equa-
tion. Show and label all extrema, inflection points, and asymp-
totes; show the concave structure clearly.

63. y = x’e™

@), = yags
65. y = exp(—x?)

66. Find the area under the graph of y = ¢* from x = 0 to
x=1

67. Find the volume generated by revolving the region of
Problem 66 around the x-axis.

68. Let K be the plane figure bounded below by the x-axis,
above by the graph of y = exp(—x7?), and on the sides by
the vertical lines at x = 0 and x = 1 (Fig. 7.3.7). Find the
volume generated by rotating R around the y-axis.

Fig. 7.3.7 The region of Problem 68

69. Find the length of the curve y = s(e* + ¢7*) fromx = 0
tox =1,

79. Find the arca of the surface generated by revolving
around the x-axis the curve of Problem 69 (Fig. 7.3.8).

In Problems 71 and 72, graph (on a single calculator or com-
puter screen) the functions on both sides of the given equation
to locate its single positive solution. Then determine numeri-
cally the value of this solution accurate to three decimal places
T e =x—1 72, ¢7F = Inx

In Problems 73 through 76, graph (on a single calculator or
computer screen) the functions on both sides of the given
equation to determine how many positive solutions it has.
Then determine numerically the value of cach solution accu-
rate to three decimal places.



