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1 5
j . (1 + Inx)’dx =Inx + E(lnx)2 + 13—0(lnx)3 + g(lmc)4 + (Inx)® + %(lnx)"’

that looks considerably less appealing than the hand result (1 + Inx)® of
Example 1.Is the relationship between the two obvious? See Probiem 54.

9.2 PROBLEMS

Evaluate the integrals in Problems 1 through 30.
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In Problems 31 through 35, evaluate the given integral by
making the indicated substitution.

31 foVx—de; u=x-—12

de; u=x+3

32-
X 3

X
33. f———-——dx; u=2x+3
V2x +3

34. fx\/zx—l dx; u=x-—1

3. f L _dx u=x+1
\/3 x+1

In Problems 36 through 50, evaluate the given integral. First
make a substitution that transforms it into a standard form.
The standard forms with the given formula numbers are inside
the back cover of this book. If a computer algebra system is
available, compare and reconcile (if necessary) the result
found using the integral table formula with a machine result.

1
36. f 100 + 922 dx; formula (17)
1
37. f 100 — 0x2 dx; formula (18)
38. f V9 — 4x? dx; formula (54)
39. f V4 + 9x? dx; formula (44)

1
40. f ———— dx; formula (45)
V16x? + 9

x2
41. f ————— dx; formula (49)

42, dx; formula (49)

] V25 + 16x?
43, jx V25 — 16x? dx; formula (57)

44. |xV4 - x* dx; formula (54)

45. |e*V9 + & dx; formula (44)

COS X

(sm x)\/l + sin’x

47. f dx; formula (47)

46. | —————=——— dx; formula (50)

48. dx; formula (49)

\/25 T 166
49. j (ox) T ns) dv; formula (48)
X

50. ng\/4x6 ~ 1 dx; formula (48)
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9.3 PROBLEMS

CHAPTER 9

Techniques of integration

£XAMPLE 7 Withn = 4in Eq. (5) we get

and with n = 5 we get

J sec x dx = 4 sec?x tanx +3 J sec’x dx

= %seczx tan x +§tanx + C, 8)

5 1
f secx dx =+ secix tanx + 3 J sec’x dx

secx tanx + 2 secx tanx + j In [secx + tanx| + C, )

using Eq. (6) in the last step.

Use inte

through 34.

-
by

11.

13.

15.

17.

19.

23.

25.

27.

29.

Jxez" dx

. J'tsintdt

J-x cos3x dx
Jx3 Inx dx

J arctaqx dx
JW Iny dy
J(lnt)z dt
fx\/)?rj dx

st x>+ 1 dx

gration by parts to compute the integrals in Problems 1

L

J.ZZrdx

xe
4. Jtzsintdt
6. Jxlnxdx

8. Jek cos3z dz

nx
—,—dx
x2

—_—

10.

R

. steczxdx
) Jt(lnt)zdr
16. [x*V1 - x? dx

j sin®9 dé

® @

j sin (Int) dt

e

22. J In(l + x%)dx
24. Jx tan"'Vx dx
26. sz cos4x dx

@ Jx arctanx dx

30. | e *sindxdx

Inx x!
.| —= 2. | —— d
31 jx\/)? dx 3 j(l + x¥r *
33. Jx coshx dx 34. | e*coshx dx

In Problems 35 through 38, first make a substitution of the -
form ¢ = x* and then integrate by parts.

35. Jx3sinxzﬂ 36. Jx’cosx"’dx

37. Jexp(—\/?c) dx 38. szsinxmdx

In Problems 39 through 42, use the method of cylindrical shells

to calculate the volume of the solid obtained by revolving the

region R around the y-axis.

39. R is bounded below by the x-axis and above by the curve
y =cosx,~mw/2ExE /2.

40. R is bounded below by the x-axis and above by the curve
y =sinx,0=x = 7.

41. R is bounded below by the x-axis, on the right by the line
x = e, and above by the curve y = lnx.

42. R isbounded below by the x-axis, on the left by the y-axis,
on the right by the line x = 1, and above by the curvé

-X

y=e*

In Problems 43 through 45, first estimate graphically OF
numerically the points of intersection of the two given curves,
then approximate the volume of the solid that is genetated
when the region bounded by these two curves is revolved
around the y-axis. '
43. y =x% and y =cosx

44. y=10x—x? and y=¢€ -1

45. y =x>—2x and y=ln(x +1)

46. Use integration by parts to evaluate

JZx arctan x dx,




with dv = 2x dx,but let v = x* + 1 rather than v = x%. [s
there a reason why v should not be chosen in this way?

47. Use integration by parts to evaluate j xe* cosx dx.

48. Use integration by parts to evaluate f sin3x cosx dx.

Derive the reduction formulas given in Problems 49 through
54. Throughout, # denotes a positive integer with an appropri-
ate side condition (suchasn Z 1 orn = 2).

49, Jx"e“‘ dx = x"e* — nfx" lo* dx

-1
50. fx"e‘xzdx = —%x"’le"*'Z + 2 3 J’x”'ze""zdx

51. f (Inx)" dx = x(Inx)" — n f (nx)* ' dx
52. fx" cosx dx = x"sinx — rzjx"'1 sinx dx

) sin"“‘xcosx n-—1{ . ._
53-]51n"xdx= <+ fsm" 2 xdx
: ) n n

=1
54. f cos’x dx =

cos" 'xsinx n-—1
+

f cos” % x dx

Use appropriate reduction formulas from the preceding list to
evaluate the integrals in Problems 55 through 57.

1
ss. f et dx @ f s~ dx
1]

57. j (inx)® dx
1

58. YApply the reduction formula in Problem 53 to show that
for each positive integer n,

/2
o =T 1 35 2n-1
L Strdr =546 2
and
/2
2468 2n
sa2n+l = i el s
fo S = S I 1

59. Derive the formula

fln(x+1o)a=(x+1o)1n(x+10)—x+c

in three different ways: () by substituting# = x + 10 and
applying the result of Example 1; (b) by integrating by
parts with « = In (x + 10) and dv = dx, noting that

x . 10
x + 10 x+ 10

and (c) by integrating by parts with « = In(x + 10) and
dv = dx,but withv = x + 10.
60. Derive the formula

fx tan~lxdr =1 (x*— Dtanx —HxP+ix+ C
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-1

by integrating by parts with « = tan"'xand v = 3 (x* — 1).

1

61. LetJ, = f x"e™* dx for each integer n = 0. (a) Show that
o

1 1
Jo=1—; and that J,1=nJ,l_1—E
for n = 1. (b) Deduce by mathematical induction that

for each integer n = 0. (c) Explain whyJ, - 0asn — +.
(d) Conclude that

mls

Fr|p4

o 1
m 2
62. Let m and n be positive integers. Derive the reduction
formula

m+1

n 1 =x
jx (lnx)" dx T

(lnx)" - fx”’(lnx)""1 dx.

n

m+1

63...An advertisement for a symbolic algebra program claims
that an engineer worked for three weeks on the integral

f(klnx—2x3+3x2+b)4dx

which deals with turbulence in an aerospace application.
The advertisement said that the engineer never got the
same answer twice during the three weeks. Explain how
you could use the reduction formula of Problem 62 to find
the engineer’s integral (but don’t actually do it). Can you
see any reason why it should have taken three weeks?

. 64. Figure 9.3.4 shows the region bounded by the x-axis and the

graph of y = ; x’sinx, 0 < x < 7. Use Formulas (42) and
(43) (inside the back cover)—which are derived by integra-
tion by parts—to find () the area of this region; (b) the vol-
ume obtained by revolving this region around the y-axis.

65. The top shown in Fig. 9.3.5 has the shape of the solid
obtained by revolving the region of Problem 64 around
the x-axis. Find the volume of this top.

20 | y=(1/2)x*sinx

Fig. 9.3.5 The top of
Problem 65

Fig. 9.3.4 The region of
Problem 64
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and
1 + cot’x = csc’x, D,cotx = —csc’x, D,cscx = —cscx cotx.

The method of case 1 succeeds with the integral
f tan"x dx

only when # is an odd positive integer, but there is another approach that works
» : equally well whether 7 is even or odd. We split off the factor tan®x and replace it with
sec’x — 1: '

f tan"x dx = f(tan”'zx)(seczx —1)dx
= f tan" " 2x sec’x dx — f tan” "2 x dx.

We integrate what we can and find that

tan" " lx

- f tan" " 2x dx. 12)
n—1

f tan" x dx =

Equation (12) is another example of a reduction formula. Its use effectively

eventually reduce the integral to either
f tan? x dx = f(seczx —1l)dc=tanx—x+C
or
f tanx dx = In |secx| + C.
EXAMPLE § Two applications of Eg. (12) give
f tanSx dx = } tan’x — f tan*x dx
= § tan’x — <§ tan’x — j tan’x dx)

=i tan’x — § tan’x + tanx — x + C. a8

Finally, in the case of an integral involving an unusual mixture of trigonometric
functions—tangents and cosecants, for example—expressing the integrand entirely
in terms of sines and cosines may yield an expression that’s easy to integrate.

9.4 PROBLEMS

Evaluate the integrals in Problems 1 through 44.

) 2
1. f sin” 2x dx 2. J'cos 5x dx cot 4x dx

S. ftan 3x dx . 6.

2 X 2% X
3. fsec ;& 4. fta“ 7 & 7. jsec3xdx fcsczmx
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1
9,
j csc?x

CHAPTER 9 Techniques_ of Integration

dx

f sin’x dx

fsinze cos’ 0 do

f cos’x dx

sm X

10. f sin’x cot?x dx

(12. )f sin®x dx

14. J- sin’t cos’t dt

|

18. f sin® ¢ cos’ ¢ dop

@ f sin*?x cos®x dx

22. fcosﬁ40 do

1L

13

sin¢
cos’t

15. dt

17.

COSX

19. | sin’2z cos?2z dz

sin 4x
COS' 4x

21.

24, f tan’x dx

J A=
J
J
23. f sectt dr
J
J
J

25. | cot’2x dx 26. j- tan 8 sec’ 9 do
27. | tan® 2x sec? 2x dx f cot’ x csc? x dx
29, | cscb2rdr f
3
31, f e b 32. f
sec” 6 csclx
tan®t
33. dt 34.
V sect f cos 2x
t
35. f €8 19 36. f sin? 3a cos? 3 da
csc’ 8
37. f cos® 5t dt 38. [ tan*x dx
39. f cot* 3r dt 40. J tan® 2t sec* 2r dr

41. f sin®2s cos®? 2t dr 42. f cot® £ csc¥? ¢ dg

+si +
. ftanx sinx @fcotx sex
secx sinx

In Problems 45 through 48, find the area of the region bound-
ed by the two given curves.

45. The x-axis and the curve y = sin’x, fromx = Otox = =
46. y = cos’x and y = sinx, from x = —m/4tox = w/4

47. y =sinxcosxand y = sin’x, fromx = w/4tox = 7

48. y = cos’x and y = sin’x,from x = w/4tox = 57/4

In Problems 49 and 50, first graph the integrand function and

guess the value of the integral. Then verify your guess by actu-

ally evaluating the integral.

‘eal2m . k.l
49, J’ sin® x cos? x dx j sin® 2x dx
0 0

In Problems 51 through 54, find the volume of the solid gener-

ated by revolving the given region R around the x-axis.

51 R is bounded by the x-axis and the curve y = sin’x,
0sx=7

. R is the region of Problem 46.

- Risboundedby y = 2and y = secxfor —w/3 = x < /3.

- R is bounded by y=4cosx and y=secx for
-w/3=2x = w/3.

. Let R denote the region that lies between the curves
y —tanxandy—-secxf0r0<x<1r/4 Find: (a) the
area of R; (b) the volume of the solid obtained by revolv-
ing R around the x-axis.

56. Find the length of the graph of y = In(cosx) from x = 0
tox = 7w/4.
57. Find

f tan x sec* x dx

in two different ways. Then show that your two results are
equivalent.

. Find
f cot’x dx

in two different ways. Then show that your two results are
equivalent.

Problems 59 through 62 are applications of the trigonometric
identities

sin A sin B = § [cos(A — B) — cos(4 + B)],
sin A cos B =; [sin(4 — B) + sin(4 + B)],

cos A cos B = [cos(A — B) + cos(4 + B)].

. Find f sin 3x cos Sx dx.
. Find f sin 2x sin 4x dx.

61. Find f cos x cos 4x dx.

62. Suppose that m and n are positive integers with m # n.

Show that (a) fo sin mx sin nx dx = 0;
(b) fo cos mx sin nx dx = 0;(c) fo cos mx cos nx dx = 0.

Substitute secx cscx = (sec’x)/(tanx) to derive the formula

fsec x csc x dx = In ftanx| + C.

‘ Show that

1

esex = x) cos(} x)

2sin(3
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then apply the result of Problem 63 to derive the formula 67. Show first that the reduction formula in Eq. (12) gives
fcscxdx:lntan% + C. jtan“xdx=§tan3x—tanx+x.
Substitute x =+ — u into the integral formula of Then compare this result with the alleged antiderivative
2
" Problem 64 to show that :

f tan® x dx = & (sec® x)(9x cos x + 3x cos 3x — 4 sin3x)

T X U
= — 2l +C.:
[secxdx In cot<4 2)‘ (o _

given by some versions of Mathematica.

o 68. the result given in Example 9 with the integral
@Use appropriate trigonometric identities to deduce from Compare the result given in Example 3 w1 © miegra

the result of Problem 65 that [ 6
tan®x dx

f sec x dx = In|sec x + tan x| + Ci-

as given by your favorite computer algebra system.

9.5 RATIONAL FUNCTIONS AND PARTIAL FRACTIONS

We now discuss methods with which every rational function can be integrated in
terms of elementary functions. Recall that a rational function R(x) is a function that
can be expressed as the quotient of two polynomials. That is,

- _Pl)
: R(x) = oG @

where P(x) and Q(x) are polynomials. The method of partial fractions is an algebra-
ic technique that decomposes R(x) into a sum of terms:

@ Pix
R() = B8 L ) + Fi() + Fyx) + - + Fi(x), @
0(x)
where p(x) is a polynomial and each expression F{x) is a fraction that can be inte-
grated with little difficulty.
’ EXAMPLE 1 We can verify (by finding a common denominator on the right) that
x*-1 1 x-1
=1-=+ .
x>+ x L x x*+1 ®
5
4 It follows that
3
3 _
i [ime- (-t
- = x4+ x X X X
_1/ =x—Injx] +3ln(x?+1) - tan”'x + C.
; The key to this simple integration lies in finding the decomposition given in Eq. (3).
4 The existence of such a decomposition and the technique of finding it are what the
method of partial fractions is about. See Fig. 9.5.1. &

"2-15-105 005 1 L5 2

X According to a theorem proved in advanced algebra, every rational function can
Fig. 9.5.1 Graphs of the func- be written in the form in Eq. (2) with each F(x) being a fraction either of the form
tion f(x) = (x* = 1)/(x* + x) of

Example 1 and its indefinite inte- A

)}

gral with C = 0. Which is which? (ax + by




