Derivatives Lab

Session 2

September 6, 2011

1. (From Ross, p. 45.) An individual who plans to retire in 20 years has decided to put an amount A in the bank at the beginning of each of the next 240 months, after which she will withdraw EUR 1000 at the beginning of each of the following 360 months. Assuming a nominal yearly interest rate of 6% compounded monthly, how large does A need to be?
2. Write a Python program which prints out an amortization schedule for a mortgage.

The program should take as input the nominal yearly interest rate r, the amount of the loan P, the number of compounding periods per annum m, and the term of the mortgage n in years. Assume that the mortgage is fully redeemed at the end of the term.

The program should compute the monthly payment, the effective annual interest rate, and a detailed payment schedule listing, for each month, the interest and principal parts of the payment and the remaining principal.
3. Find a closed form formula for the remaining principal right after the k th mortgage payment.
4. An investment sold at price P is guaranteeing a cash flow C_{1}, \ldots, C_{N} at the end of each year. Write a program to compute its IRR (internal rate of return).
Run your program on the following test case:

```
N = 20
C = 100.0 * arange(3,N+3)
P = 20000.0
```

