# Derivatives Lab 

## Session 4

September 13, 2011

1. Consider a 10-year level coupon bond with an annual coupon rate of $8 \%$ compounded annually and a par value of EUR 1000 . Plot the price of the bond vs. the yield.
2. Plot price volatility vs. time to maturity for level coupon bonds with annual coupon rates of $2 \%, 6 \%$, and $12 \%$ paid semiannually. Assume a yield of $6 \%$ and a par value of EUR 1000 . To see the different volatility behaviors, take a range from 0 up to 100 years to maturity.
3. Plot the bond value (forward value) of an $8 \% 15$-year bond compounded semi-annually vs. years to maturity under three rate scenarios: (a) the interest rate decreases instantaneously to $6 \%$, (b) the interest rate remains unchanged, and (c) the interest rate increases instantaneously to $10 \%$.
4. Plot the future value of a 30 -year bond at a coupon rate of $10 \%$ compounded annually after a 10-year horizon as a function of yield. Find the minimum of the horizon price numerically, e.g., using scipy.optimize.brent.
5. Write out a consistent set of expressions for the Macaulay duration and the immunization of a level coupon bond assuming continuous compounding of interest.
