Derivatives Lab

Session 6

September 20, 2011

1. Show that, under continuous compounding, the implied forward rate equals

$$
S(i, j)=\frac{j S(j)-i S(i)}{j-i},
$$

so that the implied single-period forward rate reads

$$
S(i, i+1)=(i+1) S(i+1)-i S(i) .
$$

Hint: The discount factor over n periods is $\exp (-n S(n))$.
Extend your program from Session 5, Exercise 2 to also plot the implied one-period forward rate into the same coordinate system as computed by the above formula, and the "instantaneous forward rate" given in the ECB table.
2. Show how you can construct a portfolio which is equivalent to the issue of a zero coupon bond at period i with maturity j at today's implied forward rate $S(i, j)$. (Such a portfolio is called a forward contract.)
3. Suppose that level coupon bonds of all maturities, coupon rates, and par values are freely tradeable at their fair market price. Suppose you wish to immunize a future liability at the end of period n. Even if interest rates never change, a portfolio which is immunized at the beginning of the first period, the Macaulay duration will drift, so the portfolio will need to be rebalanced. You may proceed as follows.

- Take a bond with maturity $2 n-2$ (or maturity 1 if $n=1) .{ }^{1}$
- Ensure that MD $=n$ by adjusting the coupon rate c.
- Match the liability by adjusting the par value F.
- At the end of each period, sell the bond at its fair market price and buy a new bond, immunized according to the above procedure.

[^0]- Do you gain or lose money relative to meeting the liability by buying a zero coupon bond?
- Repeat the analysis with random changes of the interest rate within each period.

4. Look on the internet for yield rates of Greek treasury bonds. Plot a curve showing the assumed default probability vs. years from now under the analysis that in the event of default, no money is repaid.

[^0]: ${ }^{1}$ The initial instructions suggested taking maturity $2 n$. However, in this case, it is possible that the coupon rate becomes negative. Can you prove that this does not happen for any maturity between n and $2 n-2$?

