Jacobs University School of Engineering and Science Marcel Oliver, Dierk Schleicher

Fall Term 2011

Homework Set 1

Perspectives of Mathematics

Homework Problems: The Feigenbaum Diagram

1.1. Attracting Orbits of Periods 1 and 2 for the Mandelbrot Set.

a) Consider quadratic polynomials $p_c(z) = z^d + c$ with a complex parameter c, for a degree $d \ge 2$. Determine the set C_d of parameters c for which p_c has an attracting fixed point. (Specifically for d = 2, this is $\{c \in \mathbb{C} : c = \lambda/2 - (\lambda/2)^2\}$ with $\lambda \in \mathbb{C}$, $|\lambda| < 1|$).

Show that the boundary of C_d is a cardioid: set $R_d := d^{-1/(d-1)}$ and $r_d = R_d/d$. Draw a circle C with radius $R_d - r_d$ around the origin and consider a small disk D of radius r_d that touches C from the outside on the right (so that the center of the disk is at the point R_d). Attach a pen to D to the point where it touches C. Now let D roll along the boundary of C: then the pen draws exactly the cardioid C_d .

b) Specifically for d = 2, show that p_c has an attracting orbit of period 2 if and only if |c-1| < 1/4, i.e., c is in a perfect disk around -1 with radius 1/4.

1.2. Number of Periodic Points.

a) Find the number of periodic points of period n that a quadratic polynomial has, for n = 1, 2, 3, ..., 11 (counting multiplicities). Show that this number equals $2^n - 2$ if and only if n is prime.

b) Do the same for a cubic polynomial.

c) Specifically for $z \mapsto z^2$, find all periodic points of period 1, 2, 3, and 4. Do the same for $z \mapsto z^2 - 2$ and for $z \mapsto z^2 - 0.75$. In the latter case, explain that you found all periodic points.

1.3. Conjugation of Polynomials and Newton Maps.

a) For the logistic family $f_{\mu}(x) = \mu x(1-x)$ and the Mandelbrot family $p_c(z) = z^2 + c$, find out which f_{μ} is conjugate to which p_c by a map z = ax + b. Explain how you find the Feigenbaum diagram within the Mandelbrot set.

b) Show that every cubic polynomial can be conjugated to a polynomial $z^3 + az + b$. Is this polynomial unique?

c) For a polynomial p, the associated Newton map is $N_p(z) = z - p(z)/p'(z)$. Show that all quadratic polynomials have conjugated Newton maps. Show that all cubic polynomials pmaps have their Newton maps conjugate to the Newton map for $q_{\lambda}(z) = z(z-1)(z-\lambda)$ for some $\lambda \in \mathbb{C}$. Is that λ unique?

Due Date: Wednesday, 19 October 2011, at the beginning of class.

You may work in groups of up to two people, but both of you should submit your own solutions.