Jacobs University
School of Engineering and Science
Marcel Oliver, Dierk Schleicher

Fall Term 2011
Homework Set 1

Perspectives of Mathematics

Homework Problems: The Feigenbaum Diagram

1.1. Attracting Orbits of Periods 1 and 2 for the Mandelbrot Set.

a) Consider quadratic polynomials $p_{c}(z)=z^{d}+c$ with a complex parameter c, for a degree $d \geq 2$. Determine the set C_{d} of parameters c for which p_{c} has an attracting fixed point. (Specifically for $d=2$, this is $\left\{c \in \mathbb{C}: c=\lambda / 2-(\lambda / 2)^{2}\right\}$ with $\lambda \in \mathbb{C},|\lambda|<1 \mid$).
Show that the boundary of C_{d} is a cardioid: set $R_{d}:=d^{-1 /(d-1)}$ and $r_{d}=R_{d} / d$. Draw a circle C with radius $R_{d}-r_{d}$ around the origin and consider a small disk D of radius r_{d} that touches C from the outside on the right (so that the center of the disk is at the point $\left.R_{d}\right)$. Attach a pen to D to the point where it touches C. Now let D roll along the boundary of C : then the pen draws exactly the cardioid C_{d}.

b) Specifically for $d=2$, show that p_{c} has an attracting orbit of period 2 if and only if $|c-1|<1 / 4$, i.e., c is in a perfect disk around -1 with radius $1 / 4$.

1.2. Number of Periodic Points.

a) Find the number of periodic points of period n that a quadratic polynomial has, for $n=1,2,3, \ldots, 11$ (counting multiplicities). Show that this number equals $2^{n}-2$ if and only if n is prime.
b) Do the same for a cubic polynomial.
c) Specifically for $z \mapsto z^{2}$, find all periodic points of period $1,2,3$, and 4. Do the same for $z \mapsto z^{2}-2$ and for $z \mapsto z^{2}-0.75$. In the latter case, explain that you found all periodic points.
1.3. Conjugation of Polynomials and Newton Maps.
a) For the logistic family $f_{\mu}(x)=\mu x(1-x)$ and the Mandelbrot family $p_{c}(z)=z^{2}+c$, find out which f_{μ} is conjugate to which p_{c} by a map $z=a x+b$. Explain how you find the Feigenbaum diagram within the Mandelbrot set.
b) Show that every cubic polynomial can be conjugated to a polynomial $z^{3}+a z+b$. Is this polynomial unique?
c) For a polynomial p, the associated Newton map is $N_{p}(z)=z-p(z) / p^{\prime}(z)$. Show that all quadratic polynomials have conjugated Newton maps. Show that all cubic polynomials p maps have their Newton maps conjugate to the Newton map for $q_{\lambda}(z)=z(z-1)(z-\lambda)$ for some $\lambda \in \mathbb{C}$. Is that λ unique?
Due Date: Wednesday, 19 October 2011, at the beginning of class.
You may work in groups of up to two people, but both of you should submit your own solutions.

