Perspectives of Mathematics I

Homework 3

due November 16, 2011

1. Find the pure-strategy Nash-equilibria for the two-player game with payoff matrix

		Player 2		
		1	с	r
г Т	U	1,1	2,0	3,0
aye	Μ	0,2	3,3	0, 0
Ρl	D	0,3	0,0	4, 4

2. Consider the two-player game with payoff matrix

		Player 2		
		l	r	
yer	U	3, 1	0, 0	
Pla	D	0, 0	1, 3	

- (a) Are there pure-strategy Nash equilibria?
- (b) What are the mixed-strategy Nash equilibria?
- (c) Sketch the best response functions for case (b).
- 3. Consider the following slight modification of the Cournot game considered in class. Two firms produce quantities q_1 and q_2 of the same good with respective unit cost per unit c_1 and c_2 with no fixed costs. The market price is assumed to satisfy the simple inverse linear relation $P = a - q_1 - q_2$. Now, Firm 1's objective is to maximize its market share without making a loss. Firm 2's objective is to maximize profit.

Compute both firms' best response functions and describe the Nash equilibria.

4. (a) Show that the relation

$$f(x) = \begin{cases} (\frac{1}{2}, 1] & \text{if } x < \frac{1}{2} \\ [0, \frac{1}{2}) & \text{if } x \ge \frac{1}{2} \end{cases}$$

on the interval [0, 1] does not have a fixed point $x \in f(x)$.

(b) Which condition of Kakutani's theorem is violated?