Derivatives Lab

Session 12

October 29, 2012

1. Compute an ensemble of standard Brownian paths $W(t)$ over the interval $[0,1]$ partitioned into $N=500$ time steps. Plot the empirically determied mean and standard deviation of the ensemble as a function of time.
2. Similarly, compute an ensemble of geometric Brownian paths

$$
S(t)=\exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)\right)
$$

with $\mu=0.05$ and $\sigma=0.3$ and plot mean and standard deviation as a function of time on the interval $[0,1]$.
3. Compute the corresponding stock price paths which underlie the binomial tree model using the parameters from Problem 2 and compare their mean and standard deviation with those obtained from geometric Brownian motion.
4. Use the paths so obtained in a Monte-Carlo valuation of a European call option with $K=0.9$, time of maturity $T=1.0$ and risk free rate $r=\mu$. Compare your result against the Black-Scholes price by plotting the deviation from the Black-Scholes price against the number of samples in a doubly logarithmic plot.
What is the order of the Monte-Carlo method as a function of the number of samples?

