Derivatives Lab

Session 16

November 12, 2012

1. Consider the Black-Scholes partial differential equation for the price $C(S, t)$ of a European option as function of the current stock price S and time t,

$$
\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S}-r C=0
$$

where σ is the volatility of the underlying stock and r the risk-free interest rate.
Use the chain rule to show that, under the change of variable $S=\exp (X)$ and $V(X, t)=$ $C(S, t)$, the Black-Scholes equation turns into the constant coefficient drift-diffusion equation

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} V}{\partial X^{2}}+\left(r-\frac{1}{2} \sigma^{2}\right) \frac{\partial V}{\partial X}-r V=0
$$

2. A system of linear equation of the form

$$
\left(\begin{array}{ccccc}
b_{1} & c_{1} & & \cdots & 0 \\
a_{1} & b_{2} & c_{2} & & \\
& a_{2} & b_{3} & \ddots & \\
\vdots & & \ddots & \ddots & c_{n-1} \\
0 & \cdots & & a_{n-1} & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{n}
\end{array}\right)
$$

where the left hand $n \times n$ matrix is tridiagonal, i.e., is zero except for the three main diagonals, can be easily solved in $O(n)$ steps.
(a) Write out the expressions which arise when performing Gaussian elimination on this system.
(b) Write a tridiagonal solver as a Python function.
(c) Scipy has a build-in banded matrix solver:

```
from scipy.linalg import solve_banded
```

Look up the documentation and use it to compare results and compute time against your tridiagonal solver for the case when $a_{i}=c_{i}=1$ for $i=1, \ldots, n-1$ and $b_{i}=-2$ for $i=1, \ldots, n$ when n is large and the right hand side some random vector.

