Applied Calculus

Midterm Exam I

September 24, 2015

1. (a) Find the equation of the line through the points $(3,-2)$ and $(-1,1)$.
(b) Find the equation of the quadratic polynomial $y=a x^{2}+b x+c$ through the points $(0,0),(3,0)$, and (1,1).
2. Solve the following equations for x.
(a) $2^{x}=4$
(b) $\log _{10}\left(6 \log _{2} x\right)=3$
(c) $e^{\frac{2 \ln x^{5}}{s}}=4$
($5+5+5$)
3. Suppose that for a certain data set, the doubly logarithmic (base-10) graph is a line through points $(1,3)$ and $(2,-4)$. Give an equation for y as a function of x. (10)
4. The number of bacteria in milk grows exponentially, at least for some time. At bottling time, it is known that there are 10^{6} bacteria per bottle, the next day, there are three times as many. The milk can be consumed with up to 10° bacteria per bottle.
(a) Determine the shelf-life of bottled milk under these assumptions.
(b) You are investigating the growth of bacteria in a sample of food and want to plot the number of bacteria vs. time. Which scaling function will you use on each of the coordinate axes, and why?
5. Compute the following limits.
(a) $\lim _{r \rightarrow 10} \frac{\log _{10} r}{r}$
(b) $\lim _{r \rightarrow 2} \frac{r^{2}-4}{r-2}$
(c) $\lim _{r \rightarrow \infty} \frac{e^{r}+r}{e^{r}}$
6. Determine whether $g(x)$ is continuous. If $g(x)$ has a discontinuity, state the type of discontinuity (removable discontinuity, jump discontinuity, vertical asymptote, or other).
(a) $g(x)=\frac{1}{x}$
(b) $g(x)=x \ln x^{2}$
(c) $g(x)= \begin{cases}0 & \text { for } x \leq 0 \\ x^{2} & \text { for } x>0\end{cases}$
7. An elevator is driven by a motor which is either off or moves it with the constant speed of $1 \mathrm{~m} / \mathrm{s}$ up or down.

The elevator is initially at the bottom of a building. At time $t=20 \mathrm{~s}$, it visits the third floor at height $h=12 \mathrm{~m}$, then at $\mathrm{t}=60 \mathrm{~s}$ the first floor at height $\mathrm{h}=4 \mathrm{~m}$.
(a) Is the height function $h(t)$ continuous? Why or why not?
(b) Draw a possible height function $h(t)$ onto the graph paper provided. Label the coordinate axes carefully.
(Note: The answer is not unique!)

