Applied Calculus

Homework 3

Due in class, October 6, 2015

Note: Homework 2, Problems 5 and 6 are also due October 6.

- 1. Compute the derivative of $f(x) = x^2$ in three different ways.
 - (a) Use the explicit definition of the derivative as the difference quotient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- (b) Use the power rule.
- (c) Use the product rule.
- 2. Compute the derivative of the following functions.
 - (a) $f(x) = 3x^4 + \frac{1}{2}x^2 + 32$ (b) $f(x) = x^{3/2} + x^{-3/2}$ (c) $f(x) = x e^x$ (d) $f(x) = \frac{e^x}{x}$ (e) $f(x) = \sqrt{1 + x^2}$ (f) $f(x) = \frac{1 + x}{1 - x}$ (g) $f(x) = x \ln x$ (h) $f(x) = \ln(rx + x^2)$ where *r* is a constant (i) $f(x) = e^{x/k}$ where *k* is a constant

(2 Points each)

3. Determine whether the following functions are differentiable. If not, state the point(s) of non-differentiability. Explain your answer.

(a) f(x) = |x|

(b)
$$f(x) = x^{1/3}$$

(c) $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
(d) $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x^2 & \text{for } x \ge 0 \end{cases}$
(e) $f(x) = \frac{1+x}{1-x}$

(2 Points each)