Applied Calculus

Homework 3

Due in class, October 6, 2015

Note: Homework 2, Problems 5 and 6 are also due October 6.

1. Compute the derivative of $f(x)=x^{2}$ in three different ways.
(a) Use the explicit definition of the derivative as the difference quotient

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

(b) Use the power rule.
(c) Use the product rule.
2. Compute the derivative of the following functions.
(a) $f(x)=3 x^{4}+\frac{1}{2} x^{2}+32$
(b) $f(x)=x^{3 / 2}+x^{-3 / 2}$
(c) $f(x)=x \mathrm{e}^{x}$
(d) $f(x)=\frac{e^{x}}{x}$
(e) $f(x)=\sqrt{1+x^{2}}$
(f) $f(x)=\frac{1+x}{1-x}$
(g) $f(x)=x \ln x$
(h) $f(x)=\ln \left(r x+x^{2}\right)$ where r is a constant
(i) $f(x)=\mathrm{e}^{x / k}$ where k is a constant
3. Determine whether the following functions are differentiable. If not, state the point(s) of non-differentiability. Explain your answer.
(a) $f(x)=|x|$
(b) $f(x)=x^{1 / 3}$
(c) $f(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{cases}$
(d) $f(x)= \begin{cases}0 & \text { for } x<0 \\ x^{2} & \text { for } x \geq 0\end{cases}$
(e) $f(x)=\frac{1+x}{1-x}$
(2 Points each)

